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Introduction

The covering minima are a sequence of d functionals on the space of all d dimensional
convex bodies, which depend on a fixed lattice. They were first introduced by Kannan
and Lovasz ([14]) and were shown to interpolate between two already known func-
tionals — the reciprocal of the lattice width, and the covering radius. The lattice width
quantifies the minimal number of parallel copies of a lattice hyperplane that intersect
the convex body, or in other words — how ”flat” a convex body is with respect to the
lattice. A celebrated result by Khinchine ([16]) is that a hollow convex body, ie one
that does not contain interior lattice points, has to be rather flat — there exists a Flatness
Constant, depending only on the dimension of the body, such that the lattice width of
a hollow convex body can be at most this constant. This result was used by Lenstra
([18]) to show that integer linear programming in a fixed dimension admits a polyno-
mial time algorithm. In the paper where covering minima are introduced, Kannan &
Lovasz exploit this sequence of functionals to obtain the first polynomial upper bound
on the Flatness Constant. Values of covering minima that do not coincide with the lat-
tice width or the covering radius are not known for many bodies. Furthermore, even
though there exist algorithms for computing both the lattice width (Charrier, Feschet &
Buzer [3]) and the covering radius (Cslovjecsek, Malikiosis, Naszddi & Schymura [7])
for rational polytopes, there is no known algorithm for finding any other covering min-
imum of a rational polytope.

It is easy to see that the maximal covering radius of a lattice d-polytope is d, and that
the only maximizers are unimodular simplices. As all unimodular simplices are hollow,
Codenotti, Santos & Schymura propose the problem of finding the maximal covering
radius of a non-hollow lattice polytope. This problem was shown to be equivalent to
calculating the covering minima of simplices 7, := conv(—1g4,e€y,...,¢eq4) (Codenotti,
Santos & Schymura [5]), and these problems were solved by the authors in dimensions
up to 3. Surprisingly, this was not done on the side of calculating the covering minima,
which is seemingly the simpler side of this equivalence. The conjectured non-hollow
lattice polytope maximizers of covering radius are the simplices 7;; and direct sums of
translates of these. The behaviour of the lattice width and covering radius with respect
to direct sums is known (see eg. Codenotti & Santos [6] and Codenotti, Santos & Schy-
mura [5]), but is not known for the general covering minima. It is easy to see that
values of covering minima of 7); are at least the conjectured values, therefore with this
in mind, we are interested in obtaining upper bounds on covering minima. In general,
lower bounds of covering minima have been studied: already by Kannan & Lovéasz [14]
with respect to the lattice point enumerator, as well as by Codenotti, Santos & Schymura
[5] and Merino & Schymura [9] with respect to the volume of the body, in the context
of the Covering Product Conjecture motivated by the conjecture of Makai Jr. [20] and



the fundamental theorems of Minkowski [22]. Known upper bounds are due to Kan-
nan & Lovdsz, who gave upper bounds on covering minima that involve Minkowski’s
successive minima, which Henk, Schymura & Xue [11] strenghtened by replacing the
successive minima with packing minima.

In this thesis, we aim find upper bounds for the covering minima of convex bodies, as
well as explain how covering minima interact with direct sums.

The thesis is divided into seven sections. In Section 1, we give some general prelimi-
naries on Convex and Lattice Geometry, as well as a detailed introduction to the lattice
width and covering radius of a convex body. In Section 2, we will introduce covering
minima and present some of their properties and connections to the lattice width and
covering radius, and we will present all known values of covering minima of specific
convex bodies. In Section 3, we show the maximizers of the covering radius in the fam-
ily of lattice polytope, and present known results and conjectures for maximizers in the
family of non-hollow lattice polytopes. The known upper bounds on general covering
minima will be presented in Section 4.

In Section 5, we give an upper bound on covering minima of convex bodies, which
depends on the lower dimensional covering minima of projections and intersections of
the convex body with respect to certain linear subspaces. Furthermore, we will give a
formula for covering minima of the direct sum of two convex bodies, which connects the
two results from [6] and [5] on lattice width and covering radius. Utilizing this general
bound, we give an upper bound for the covering minima of simplices 7. In Section 6,
we prove another upper bound on covering minima of convex bodies, which involves
only the covering radii of intersections of the body with coordinate subspaces. We then
use this bound to give a second upper bound on covering minima of 7. Furthermore,
we show that this upper bound is going to be sharp for all covering minima of a special
family of convex bodies, which includes all of the convex bodies for which values of
all covering minima are known. In Section 7, we compare the three upper bounds on
covering minima of convex bodies — the ones from Sections 4, 5 and 6. Throughout
this thesis, the running examples are exactly the lattice polytopes for which values of
covering minima are known, and we compare the given bounds on these, as well as our
simplices of interest 7T,. For all examples, at least one of our bounds is better than the
known ones. In the case of simplices 7;, the bound from Section 5 is always slightly
better than the known bounds, and in general performs better for small values of i
compared to d, whereas the bound from Section 6 is slightly worse for small values of
i, but significantly better for big values of i compared to d. For example, for i = d — 1,
the conjectured value of the covering minimum is 2, the known bounds are valued
around d, and the bound from Section 6 is valued below ‘21.



1 Mathematical preliminaries

For a ring R, we denote by GL,(R) the general linear group of order d, ie all invertible
d x d matrices over R.

For a linear subspace L < R?, by 7, we denote the orthogonal projection of the space
R? to the subspace L, and by L+ we denote its orthogonal complement.

By A;(RY) we denote the family of all i dimensional affine subspaces of R“.

By 1, and 0, we denote the all ones and all zeroes vectors in R?, and with ey, ..., e; € R?
we denote the standard basis vetors.

We will assume knowledge of basic notions on polytopes, a good reference for this is

[25]. We denote the standard simplex of dimension d to be S; := conv(0g4, €1, ..., €q),
the d-hypercube C; := [—1,1]? and the d-crosspolytope C := conv{ze; | i € [d]}. With
T, we denote the simplex conv(—14,€1,...,¢e4). These simplices will be crucial in this

thesis, and will be much more discussed in Subsection 3.1.

1.1 Convex Bodies

Definition 1.1. A subset K < R? is a convex body if it is convex, compact and full
dimensional, ie dim(aff(K)) = d. We denote the family of all convex bodies in R¢ by K.

Definition 1.2. Let K € K? be a convex body. Its polar body is
K*:={fe®)* | fa<1, forallze K}.

Definition 1.3. We say that a convex body S € K¢ is o-symmetric if its symmetric around
the origin, ie S = —8S.

Definition 1.4. Let RY = V @ W be a decomposition of R? into subspaces of dimensions
dim(V) =, dim(W) = d—1, K < V and L < W convex bodies, full dimensional in their
respective subspaces, that contain the origin. We define the direct sum of these convex
bodies as

KeL:={x+(1-Ny|zeK, yeL, Ae|0,1]}.

Remark 1.5. Notice that we don’t reqgire 0, to be in the relative interior of K and L,
which differs from the standard definition of the direct sum of polytopes which agrees
with the face lattice. Since when we talk about polytopes, we don’t comment on combi-
natorial types, this definition is more suitable because our results work with this more
general construction.

1.2 Lattices

Definition 1.6. Let fi,. .., f; € R? be linearly independent. The set A = spany(fi, ..., fa)
is called a (d-dimensional) lattice. We denote the family of all lattices in R? with £?¢. We
refer to the elements of A as lattice points.



From this definition, we can see lattices as full dimensional linear images of Z¢, ie
L4 = {A7%] A € GLy4(R)}. An equivalent definition of a lattice is as a discrete additive
subgroup of full dimension of R¢. This equivalence is not a trivial observation, and for
a general background on lattices as well as convex bodies, we refer to [10].

Convention 1.7. When the lattice is omitted in any notation further, it is assumed to be
7 for the appropriate dimension d.

Definition 1.8. Let A = R? be a lattice. We say that a € A is primitive if there does not
exist b € A and n € N-; such that a = nb.

Definition 1.9. Let A € GL4(R) be an invertible matrix, and A = AZ¢ a lattice. The
determinant of the lattice A is det A := | det A|.

Definition 1.10. Let A = R? be a lattice. Then, every set of vectors fi, ..., f; € R? such
that A = span,(f1,..., f4) is called the basis of the lattice A.

Definition 1.11. Let v,...,vq € R? be affinely independent. The standard half-open
parallelepiped spanned by these points is the set

d
H(UQ...,Ud) = {Uo—l—Z)\wz|O<)\z<1forallze[d]}
=1

Additionally, if v¢ = 04 and vy, ...,vy is a basis of A, we call this standard half-open
parallelepiped a fundamental domain of the lattice A.

Proposition 1.12. Let A < R? be a lattice and vy, . . . ,vq € A affinely independent. Then
(v, ...,vq) + A = R%

Additionally, if I(vy, . .. ,vq) is a fundamental domain, every point x € R? can be uniquely
represented as x = p + a, where p € Il(vy, ..., vq) and a € A.

Definition 1.13. Let A € R? be a lattice. A linear map A : R? — R? is a unimodular
transformation if its restriction to A is a bijection to A.

Definition 1.14. Let A < R? be a lattice. We say P < R? is a lattice polytope if it is a
polytope whose vertices are lattice points. Additionally, P is a rational polytope if there
exists n € N such that nP is a lattice polytope, ie P has vertices in Q“.

Definition 1.15. Let A < R? be a lattice. We say that S < R? with vertices vy, . .., vy € R?
is an unimodular simplex if v; — vy, . .., vq — vy is a basis for A.



One could prove that A being a unimodular transform is equivalent to it sending a basis
of the lattice A to a basis of the lattice A. More specifically, if we fix a basis of A, which
is by definition also a basis of R%, and view this map as a matrix in GL4(R), we can see
that this is exactly the notion of a unimodular matrix ie matrix in GL4(Z). Similarly,
every unimodular simplex with respect to the lattuce Z¢ is going to be A - S,;, where
A€ GLd(Z)

Proposition 1.16. Let A € R? and S < R? a lattice simplex with vertices vy, . ..,vq € A.
Then, S is a unimodular simplex if and only if I1(vo, ...,vs) N A = {vo}.
Definition 1.17. Let A € £¢ be a lattice and L < R? a linear subspace. We say that L

is a rational subspace of R? with respect to A if it has a basis consisting of vectors in the
lattice A.

Proposition 1.18. Let A < R? be a lattice and L < R? a linear subspace. Then, L is a
rational subspace iff A n L and 71, (A) are lattices.

Definition 1.19. Let A € £? be a lattice. Its dual lattice is
A ={fe®R)* | freZ forallzeA}.
Specifically, (2%)* = 7¢.

Definition 1.20. Let RY = V@®W be a decomposition of R¢ into subspaces of dimensions
dim(V) = [, dim(W) =d—land A <€ V, ' € W lattices. We define the direct sum of
these lattices as the lattice:

A®T :={a+b|lacA, bel}.

1.3 Successive Minima

Definition 1.21. For an o-symmetric convex body S € K¢, a lattice A € £ and i € [d],
we define Minkowski’s successive minima as

Ai(S,A) == min {A > 0 | dim(spang{AS nA}) =i }.

Remark 1.22. Notice that from the definition of successive minima, for every o-symmetric
K e K¥and A € £%, )\ (K,\) < --- < M\(K, A). Additionally, notice that if L € K9 is
o-symmetric and L < K, for every i € [d], \i(L,A) = \(K, ).

If A > 0, then for all i € [d], \i(AK, A) = 3 X(K,A).

Example 1.23. Notice that the hypercube C; contains d linearly independent lattice
vectors, for example ey, ..., e4, and therefore \;(C;) < 1. We can also notice that all
lattice points in C; have coordinates 0,1 or -1, and the only one that is in the interior
is 04. Therefore, for any 0 < A < 1, the only lattice point in ACy is 04, and therefore
A1(Cq) = 1. From these two, and monotonicity of successive minima, we get \(Cy) =
= 0(C) = 1.



Example 1.24. Similarly to previous example, the crosspolytope C; contains ey, ..., ey,
ie \y(C%) < 1. Since Cj < (4, we can conclude \;(C3) > 1 for all i € [d]. From
monotonicity of successive minima, A\ (C}) = --- = \y(CF) = 1.

Example 1.25. Notice that for any convex body K ¢ K¢ K — K is an o-symmetric
convex body, and therefore its successive minima are well defined.

To see what the successive minima of S; — Sy is, notice that eq,...,eq € Sq — Sy, hence
Aa(S4—S4) < 1. Vertices of S;— .S, are a subset of the set {v+w |v € V(Sy), we V(=Sy)},
all of them are 0-1 vectors. Therefore, S; — S; € Cy. In the same manner as before, we
conclude A\;(Sq— Sgq) = -+ = Ag(Sqg — Sq) = 1.

Along with introducing the successive minima Minkowski ([22]) began the field of ge-
ometry of numbers, with the following result:

Theorem 1.26. (Minkowski’s First Fundamental Theorem) Let S € K¢ be an o-symmetric
body and A € £¢ a lattice. Then:

A (S, A) <2 (cvlzzgg)))d

This is not the most natural formulation of this theorem, but it’s the one that suits our
purposes the best. The more intuitive way of understanding this theorem is that it says
that a o—symmetric body with volume at least 2¢ det(A) has to contain a non-zero lattice
point.

We can see that Minkowski’s First Fundamental Theorem can also be written as
A1 (S, A)"vol(S) < 2% det(A).
The natural strenghtening of this theorem was also given by Minkowski.

Theorem 1.27. (Minkowski’s Second Fundamental Theorem) Let S € K% be an o-symmetric
body and A € £¢ a lattice. Then:

AM(S,A) - Aa(S, A) vol(S) < 2% det(A).

1.4 Lattice Width

Definition 1.28. Let K < R? be a convex body and A < R? a lattice, and f € (R%)* a
linear functional. The width of K with respect to the linear functional f is

WK, f) = max | fx — fyl.
z,ye K
The lattice width of K with respect to the lattice A is

K):= i K. f).
wa(K) soain w(K, f)
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This notion is motivated by the Eucledian width of a convex body, but has an essentially
different behaviour. The Eucledian width is the minimum width when considering only
the normalized functionals, specifically all the functionals corresponding to points of the
sphere S9~1. In the lattice width case, the functionals we are considering correspond
to real vectors of different lengths, but with integer coordinates, so the lattice width
encapsulates more number theoretical information then the purely metric information
that the Eucledian width encapsulates.

Remark 1.29. Notice that for any full dimensional lattice polytope P, its lattice width
has to be a positive integer. This follows from the fact that every functional f € A*\{0}
takes integer values on all vertices of P, and it has to be maximized and minimized
in at least one vertex. It cannot be zero, because that would imply that P lies in the
hyperplane defined by the width achieving direction.

Moreover, in the class of lattice polytopes, we can view the lattice width as the maximal
number of lattice hyperplanes in any fixed direction intersecting it, minus 1.

Remark 1.30. Notice that we can restrict the search for width achieving directions to
primitive non-zero lattice functionals, since if a = nb for a,b € A and n € N-4, for every
r € RY, ax = n(bx), so w(K,a) = nw(K,b). Specifically, w(K,b) < w(K,a) and a cannot
be a width achieving direction.

Example 1.31. The lattice width of the standard unimodular simplex S, with respect to
the lattice 7% is 1. Since S, is a lattice polytope, w(Sy) is a positive integer, specifically
w(Sq) = 1. Observe the non zero lattice functional f that just gives back the first
coordinate of a point. Then, fe; — f0, = 1, and therefore w(Sy) < w(Sy, f) < 1.

Remark 1.32. Notice that the lattice width is positively homogeneous, ie for every
A > 0, UJA(AK) = )\CL)A(K).

Definition 1.33. We say that a convex body K € K¢ is hollow with respect to the lattice
A if it doesn’t have interior lattice points, ie int(K) n A = .

Remark 1.34. In literature, the notion of a convex body being hollow is sometimes also
refered to it as being lattice-free.

An important result regarding the lattice width is the Flatness Theorem, which states
that a hollow convex body cannot be arbitrarily wide.

Theorem 1.35 (Flatness Theorem, [16]). There exists a constant Flt(d) depending just
on the dimension d such that for any hollow convex body K € K¢, the following holds:

w(K) < Flt(d).



Khinchine gave an upper bound for Flit(d) in [16] of order of magnitude n!. The first
polynomial bound on this value, O(n?), was given by Kannan and Lovasz in [14], using
the notion of covering minima, which are the focus of this thesis. This is still far off
from the expected value O(d), which is the best one could hope to get since dS; is a hol-
low d-polytope of lattice width d with respect to Z¢. Recently, Reis and Rothvoss ([23])
gave the best known upper bound on Fit(d) being O(dlog® d), also using certain notions
from the Kannan and Lovdsz paper. Moreover, the only known exact values for Flt(d)
are for d = 1,2, where the first case just states that no segment of length bigger than 1
is hollow, and the second is a result by Hurkens ([12]), where he shows Fit(2) = 1+ %

The integer linear programming problem is the question of deciding if a given system of
linear inequalities with integer coefficients has an integer solution. There is no known
algorithm in polynomial time with respect to the lenght of the input, and the problem
phrased like that is proven to be NP-complete.

The existance of the Flatness constant was used by Lenstra in [18] to find a polynomial
algorithm for integer linear programming in fixed dimension. Moreover, the algorithm
would either efficiently find a solution, or find a width direction and reduce the problem
to a bounded number of lower dimensional problems.

The following proposition is folklore and shows a connection between the lattice width
and successive minima.

Proposition 1.36. Let K € K? be a convex body and A € £% a lattice. Then,

Proof. From the definition of successive minima 1.21, we can notice that the first suc-
cessive minimum can be seen as the smallest scaling of the convex body that contains a
non-zero lattice point. Specifically, in this example:

AM((K — K)*, A%) = min {A > 0 | A(K — K)* A # {04}} .

Denote by A} := A\ ((K — K)*,A*), and let f € (\}(K — K)* n A*)\{0,4}. By definition of
the polar body for all p e K — K, fp < A}, which is equivalent to fx — fy < A} holding
for all z,y € K. Since this holds for all z, y € K, it is equivalent to | fz — fy| < A] holding
forall z,y € K.

This would now imply that

WA(va) := Inax |f$_fy| < /\Tv
z,ye K

and from minimality of \{ we can conclude w, (K, f) = A\i. Moreover, from minimality
of A} we can also notice that

A= K = i K =: K).
1 WA( 7f) geal}g{lo}wz\( 79) WA( )
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]

Remark 1.37. From the previous proof we can also notice that the directions in which
the lattice width of a convex body K is achieved are exactly the non-zero lattice points
in \((K — K)*, A) (K — K)*.

Example 1.38. We can now show that w(C,;) = 2. From Proposition 1.36, we know
W(Cd) = )\1((0(1 — Cd)*) = )\1((20[1)*) = )\1(%05) = 2/\1(03) = 2, by Example 1.24.

Example 1.39. Similar to previous example, w(C%) = 2X\,(C,) = 2, by Example 1.2.3.

In practice, this is the easiest way to algorithmically compute the width of a given
convex body. The issue is that to make it efficient, one would have to find the shortest
vectors in a lattice, which is NP-hard. A more efficient algorithm for computing the
lattice width is given by Charrier, Feschet and Buzer in [3].

1.5 Covering Radius

Definition 1.40. Let K € K be a convex body and A € £? a lattice. The covering radius
of K with respect to the lattice A is

p(K,A) :=min{p >0 | pK + A =R},

Example 1.41. The covering radius of the standard cube C,; = [—1, 1]¢ with respect to
the lattice Z¢ is 1. For every 0 < ¢ < 3, for example the point 11, will not be contained
in (% — €)Cy + 7%, therefore p(Cy) = % On the other hand, for z € R, if we denote
by [z] the closest integer to z, where [a + ]| := a for a € Z, we can see that for any

p=(p1,...,pa) € R?, we can decompose it as (p1 — [p1], -, pa — [pal) + ([p1], - -, [pa]) €
1Cy+ 77, and therefore p(Cy) < 3.

Example 1.42. The covering radius of the d-crosspolytope with respect to Z¢ is g. Notice

d
that C; < dCj, since for any vertex of the hypercube, v € {—1,1}%, v = 3 Zduve;,
i=1

and duv;e; are vertices of C'j. Therefore, %(Jd - g(];, and Example 1.41 tells us that
1Ci+ 7% =R, so u(Cy) < 4.

Now, to prove that ;(C) > £, we will show that the point 11, cannot be in (¢ —¢)Cs +Z¢
for any ¢ > ¢ > 0. Assume the countrary, and let a € Z? be such that 11, € a+ (¢ —£)C;
and a is such that it has the minimal possible number of strictly positive entries. For i €

d d d d
[d], leta;, B; = 0, 3, a;+ Y, B; = 1suchthat 11, = a+ >} oy($—¢)e;— >, Bi($—¢)e;. Then,
=1 i=1 i=1 =1
if by a; we denote the i-th coordinate of the point a for all i € [d], 1 —a; = (¢ —¢)(ca; — ;).

d d d
Summing up all of these inequalities, we get 4 — > a; = (£ — &)(X, a; — Y, ;). Since
i=1 =1 =1

9



d d d d
these coefficients are non-negative, >, a; — >, 8; < >, o; + >, f; = 1, so the right hand
i=1 i=1 =1 i=1
side of this equality has to be strictly less than £, since ¢ > 0. That means there is at least
one strictly positive a; and without loss of generality, assume a; > 0. Then, by swapping
the coefficients a;; and 3, none of the other equations change, and the first one becomes
(4—e)(Bi—a;) = —(3—a1) = 1 —(—ay +1). Thismeans 31, € (—a; +1,as,...,aq) + 2C,
and since a; was strictly positive, —a; + 1 is not, which contradicts the minimality

condition for a.

A more geometric interpretation of the covering radius of a convex body is to be seen
in the following proposition, which is folklore and we will prove it for completness.

Proposition 1.43. Let K € K¢ be a convex body and A € K? a lattice. Then its covering
radius is the maximal scalar ;1 = 0 such that ;K admits a hollow translate.

Proof. Let pu:= u(K,A) and y/ := max {\ > 0 | AK admits a hollow translate}. For con-
venience, suppose 0, € K, so that for every \' < A we can claim 'K < \K, since K is
convex. We can make this assumption since both of the values p and p’ are translatory
invariant.

First, let’s prove p > 1. Let p € R? be such that p + /K is hollow, ie
(p+p/ int(K)) nA =g

Then, we claim that —p ¢ x/ int(K) + A. Suppose the opposite, —p = p'q + a, wherer ¢ €
int(K') and a € A. Then, —a = p+ i'q, and here —a € A and p+ /g € p+ ¢/ int(K), which
is impossible since p + p/ K is hollow. Now since p ¢ p/ int(K) + A, so g/ int(K) + A # RY,
we can conclude that for every e > 0, (' —e) K + A € (/K + A # R4, therefore by letting
e approach zero, we get 1/ < p.

Now, let’s prove that p /K admits a hollow translate, which would imply ¢ < p/. Similar
to the first inequality, we want to take a point p € R\ (zint(K) + A) and notice that
—p + pK is hollow, following from the same observations. Therefore, we just need to
show that the set R?\ (zint(K) + A) is non-empty.

Since  is minimal such that uK + A = RY, for every ¢ > 0, (u —e)K + A # R Let
F < R? be a fundamental domain of the lattice A. For any point z € R\ {(u — ) K + A},
by Proposition 1.12, there exist unique representation of = as a sum of a point in z. € F’
and a point @ € A. Since z. + a € R\{(1z — ¢)K + A}, we can conclude z. € F\{(u —
e)K + A}. The closure of a fundamental domain is compact, so {z.}.-o has a limit point
z € cl(F). Then we can say that = ¢ (u — ¢)K + A for every ¢ > 0, and therefore is not
in pint(K) + A. O
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Example 1.44. The covering radius of the unimodular simplex S; = conv(0g4, €1, ..., €q4)
with respect to the lattice Z¢ is d.
From Proposition 1.43, to prove u(S;) > d it suffices to show that dS; is hollow. Since

d
dint(Sy) = {;1: eRM|z; >0, M, < d}, there is no integers x4, . . ., x4 satisfiying these

=1
conditions, ie dS; is hollow. Since [0,1]¢ < dS,, and [0, 1]¢ is a fundamental domain,

dS; + 7% 200,1] + 7% = R4, ie u(Sq) < d.

The following definition is due to Codenotti, Santos and Schymura ([5]), and encapsu-
lates the ideas seen in the previous proof.

Definition 1.45. Let K € K¢ be a convex body, A € £? a lattice and u := p(K,A). A
point p € R? is last covered by K with respect to A if

p¢ pint(K) + A.

Notice that the second step of this proof was essentially just proving that last covered
points always exist.

Remark 1.46. Notice that if for some p > 0, since last covered points always exist, ie
(K, A)int(K) + A # R?, the following two hold:

1. pint(K) + A # R = p < pu(K,A),
2. pint(K)+ A =R? = u> u(K,A).

(a) TQ (b) C’2

Figure 1.1: Last Covered Points

(C) COHV(—%el, %ela —€2, 62)

Figure 1.1 shows three convex bodies, scaled by their covering radii which are 1, % and
1 respectively, shaded in dark gray, as well as the lattice Z?. Shaded in light gray are
some of the lattice translates of the convex bodies, and in red are the last covered points
that coincide with the original copy of the convex body. From example (b) we can notice
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that the set of last covered points coinciding with ;(/K) K does not have to be finite. In
these examples we can notice that last covered points will always coincide with at least
two lattice translates of p(K)JK, but from example (c) we can also notice that not all
intersections of at least two lattice translates of (/K )J0K have to be last covered points,
since they can be in the interior of another lattice translate of u(K)K.

Algorithms for calculating the covering radius of a rational polytope have been explored.
Kannan ([13]) reduces the Frobenius coin problem, which is known to be NP-hard
with respect to the lenght of the input, to calculating the covering radius of specific
rational simplices, and gives the first algorithm for calculating covering radii of rational
polytopes in the same paper. This proof is quite technical, and after using the obtained
structural results, relies on solving multiple mixed integer linear programs.

The notion of last covered points brings a more geometric viewpoint of the study of
the covering radius. By approaching this problem from the last covered points point of
view, Cslovjcsek, Malikosis, Naszodi and Schymura [7] gave a more efficient and more
easily implementable algorithm for computing the covering radius of a given rational
polytope. The algorithm is based on the following lemma, which reduces the problem
to a binary search where in each step, one solves a system of linear inequations.

Lemma 1.47. [7, Lem. 3.1] Let P = {x € R? | al'x < b;, i € [m]} be a facet description of
a polytope P < R¢ with the origin in the interior, ie b; > 0 for all i € [m]. Then, there exist
facet normals a;,, ..., a;,,, of P and not necessairily distinct lattice points z1, ..., z441 € Z°
such that the system of linear equations

al (x—=n) af, (x = za)

M: b = . s s = b

i1

ld+1
in the variables y and x has a unique solution (f,p), where i = p(P) and p is a last
covered point by P with respect to Z°.

To prove this lemma, one takes any last covered point that is contained in the most of
the sets from the family {F' + Z¢ | F is a facet of P}. Then, consider the set of facet
normals of the facets containg that last covered point in one of their lattice translates.
They show that the affine hull of this set is R¢, and therefore that set has to contain
at least d + 1 points. The system of linear equations essentially describes getting the
observed last covered point as the intersection of the scaled facet translates it is in.

Geometrically, this lemma states that for a polytope P, there exists a last covered point p
that is exactly the intersection of some lattice translates of d + 1 distinct facets of ;(P)P.

On the other hand, last covered points are useful for investigating inclusion maximal
convex bodies with a fixed covering radius, which were first studied by Codenotti, San-

tos and Schymura.
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Definition 1.48. Let K € K¢ be a convex body and A € £¢ a lattice. Then, K is called
tight for A if for every convex body K’ 2 K we have

(K", A) < (K, A).
The following lemma gives a characterization of all tight convex bodies.

Lemma 1.49. [5, Lem. 2.5] Let K € K¢ be a convex body, A € £ a lattice and ;1 :=
p(K, A). Then, the following properties are equivalent:

i) K is tight for A.
ii) K is a polytope and for every facet F of K and for every last covered point p,

p € relint(u - F) + A.

iii) K is a polytope and every facet of every hollow translate of ;1K is non-hollow.

iv) Every hollow translate of ;1 - K is an inclusion maximal hollow convex body.

The notion of tightness was furthermore used for finding maximizers for covering radis
in the family of non-hollow lattice polytopes in dimensions 2 and 3, which there will be
more word on in Subsection 3.1. They did this through the following lemmas and the
fact that the covering radius is monotonely decreasing with respect to set inclusion.

Lemma 1.50. [5, Lem 2.7] Every simplex is tight for every lattice.

Lemma 1.51. [5, Lem. 2.8] Let K| and K, be convex bodies containing the origin and A\,
and A be lattices. Then, K; and K are tight for A; and A, respectively iff K1 ® K is tight
fOT A1 @ A2.

2 Covering Minima

The functionals on the family of convex bodies that we are the most interested in are
covering minima, introduced by Kannan and Lovasz in [14]. In this section, we will see
the definition and some basic properties of covering minima, as well as their connections
to the previously mentioned functionals. Furthermore, we will see some examples of
convex bodies for which we do know the values of all covering minima.

13



2.1 Definition and Properties

Definition 2.1. Let K € K% be a convex body, A € £? a lattice and i € [d]. The i-th
covering minimum of K with respect to the lattice A is

pi(K,A) :=inf{p>0| (uK +A)n L # Zforall Le A;_;(R")}

Remark 2.2. Notice that if the convex body is of dimension d, the notions of d-th cov-
ering minimum and the covering radius are by definition the same, ie for every K € K¢
and A € L7,

:ud(K> A) = M(K> A)'

Remark 2.3. Some properties of covering minima are as follows:

* (Translation invariance) Since this definition requires intersections with all affine
subspaces of fixed dimension, the covering minima are invariant with respect to
translation of the convex body.

* (GL4(R) invariance) For A € GL4(R), A~! is a bijection on A,_;, therefore uAK +
AN intersects all d—i affine subspaces iff /K + A intersects them all, ie p;(AK, AA) =
o7 (K, A).

* (Monotonicity) Notice that if some subset of R? intersects all i-dimensional affine
subspaces, it also intersects all (i — 1)-dimensional affine subspaces, therefore y; <

py < -+ < g

* (Monotonicity with respect to inclusion of convex bodies) Let K, K' € K? and K’ <
K. Then for every pn = 0, uK' + A € puK + A, so u(K,A) < p(K', A).

* (Monotonicity with respect to inclusion of lattices) Let A, A’ € £¢ and A’ < A. Then
forevery p = 0, ulK + N € pK + A, so (K, A) < p(K, N).

* (Scaling) For a scalar A > 0, y;(AK,A) = +p,;,(K,A) since for every u > 0, uK =
(13 (K.

Notice also that since i = pg4, all of the invariance and monotonicity with respect to
inclusion properties also hold for the covering radius.

Remark 2.4. In the definition of the covering minima, it is valid to talk about the
minimum of these values instead of their infimum, since K is compact.

Let L € Ay_;(R?) be arbitrary. By the definition of the i-th covering minimum, for every
e > 0, there exist z. € K and a. € A such that (u; + €)z. + a. € L. Since A is countable,
there is an element a € A such that there exists a sequence {¢, },en such that a., = a for
all n € N, ie the intersection with L happens in the same lattice translate of K. Since
K is compact, {z., },en has a sequence converging to some = € K. Since L is closed,
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lim (p; + €p)x., + a = p;x + a € L. Because L was arbitrary, 1, K + A intersects all
n—:aoo

elements of A,_;(R?). Notice that since p = 1, this also justifies the use of minimum in
the definition of the covering radius of a convex body.

Remark 2.5. Since Q is dense in R and K + A is a closed set, in the definition of the i-th
covering minimum, it is enough to require intersections with all translates of all rational
subspaces of dimension d — i.

Lemma 2.6. [14, Lemma 2.3] For a convex body K € K¢ and lattice A € L%, the following

equality holds:
1

(K A) = o ()’

Proof. Let f € A* be a non-zero primitive lattice functional, a := max fr and G :=
e

m11? fy. We claim that for any ¢ > 0, u/ + A intersects all hyperplanes of the form

y€E

H, :={x e R fz =~} if and only if u(a — g) = 1.

Let a € A be arbitrary. Then, fa € Z by the definition of a dual lattice, and since f
is primitive, fa takes all integer values when «a passes through A. Therefore, for every
pea+pk, fpe|fa+ pp, fa+ po]. pK + A intersects all hyperplanes A, if and only if

UUra+ B, fa+pal = {JIn +pB,n + pa] = R,

aeA nez

This will happen if and only if u(o — ) > 1. Since w(K, f) = a — f3, this is equivalent
to uw(K, f) = 1. Therefore, uK + A intersects all translates of all rational hyperplanes
if and only if for every non-zero primitive f € A*, uw(K,A) = 1. By the definition of
the lattice width and Remark 1.30, this is equivalent to uw,(K) > 1. Since by Remark
2.1 it is enough to check for all hyperplanes with rational directions, the first covering
minimum is the minimum of all such p, we can conclude that u (K, A)wpa(K) = 1, ie
pi (K, A) = i H

wA(K) *

Remark 2.7. Observe that the covering minima are a sequence of functionals connect-
ing the notions of the covering radius and the lattice width, since jy = i, and Lemma
2.6 connects the first covering minimum with the lattice width by saying they are recip-
rocal. Thus, the sequence of covering minima interpolates between < and s.

Both the lattice width and covering radius have been heavily studied, and specific values
are known for many polytopes. Moreover, algorithms for computing both the covering
radius and lattice width of a rational polytope in an arbitrary fixed dimension exist.
However, calculating any of the covering minima for 2 < i < d — 1 is a much harder
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task, and they are known for a small family of polytopes, and no algorithms for compu-
tation are known.

Motivated by the notion of last covered points for the covering radius of a convex body,
we would like to define a similar notion for other covering minima.

Definition 2.8. Let K € K¢ be a convex body, A € £? a lattice and i € [d]. We say that
L e Aq i(R?) a last covered subspace if

(i (KA Int(K) +A) n L = .

D10 -
>
HAs- EEE- O

P

(a) TQ (b) CQ (C) COHV(—%Bl, %617 —€2, 62)

Figure 2.1: Last Covered Subspaces of dimension 1

Figure 2.1 shows the same three convex bodies as before, scaled by their first covering
minima which are all %, shaded in dark gray, as well as some of their lattice translates
in light gray. The red lines are the last covered subspaces of dimension 1 that coincide
with the scaling of the original copy of the convex body.

The notion of last covered subspaces was implicitly used by Kannan and Lovasz, for
example in the following lemma.

Lemma 2.9. [14, Lem. 2.2] Let K € K% be a convex body, A € L% a lattice and i € [d|.
Then, there exists L € Ay ;(R?) such that:

1. Lo (p(K,A)int(K) + A) = g and
2. the linear subspace parallel to L is rational.

Remark 2.10. In other words, this lemma says that last covered subspaces always exist.
In a similar vein to Remark 1.46, for any u > 0, the following two hold:

1. [3L e Aqi(R?) (pint(K) + A) n L = | = p < m(K,A),
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2. [VLe Ami(RY) (pint(K) + A) n L # ] = p> (K, A).

Kannan and Lovasz observe in [14, Remark 1] the following equivalent definition of
covering minima, which we prove for completeness.

Proposition 2.11. Let K € K% be a convex body, A € £ a lattice and i € [d]. Then
pi( K, A) = max {p(r(K), 7 (A)) | L is a rational i-dim subspace of R?} .

Proof. (=:) Let p; := p;(K, A), L be a rational i-dimensional linear subspace of R? and
t € L arbitrary. Then, t + L' € Ay ;(RY), therefore (1; K + A) n (¢t + L') # . Projecting
to L, we get (7 (K) + m(A)) n {t} # &. Since t € L was arbitrary, this implies
i (K) + mr(A) = L, ie p; = p(mp (K), w(A)).

(<:) By Lemma 2.9, there exists a last covered subspace L' € A, ;(R?) such that the
linear subspace parallel to [ is rational. Let L' = ¢ + L, where L is a linear subspace
and t € L. By projecting onto L*, which is a rational linear subspace of dimension 1,
we gett ¢ p;int(mp (K))+mp(A),ie u; < p(mpe (K), w0 (A)). Therefore, since y; is less
or equal then one of the values on the RHS, it’s less or equal then their maximum. [

Remark 2.12. Following this proof, we can also notice a connection between the last
covered subspaces and the rational linear subspaces for which the covering radius of
the projection will achieve the covering minimum. Sepecifically, if L' € A; ;(R?) is a last
covered subspace, and L the linear subspace parallel to it, then L' is a direction such
that p; (K, A) = p(mp. (K), 7 A), and additionally, L' projects to a last covered point of
711 (K) with respect to the lattice w1 (A).

This also works the other way around — for every projection direction achieving the
covering minimum, every subspace parallel to its orthogonal complement that contains
a last covered point of the projection will be a last covered subspace of the original
convex body.

We would like to point out that this viewpoint on covering minima provides us with
lower bounds when looking at a specific convex body, but doesn’t suffice for giving
global lower bounds that hold for all convex bodies, for example in the spirit of Minkowski’s
theorems, which are folklore for the covering radius, see for example [10]. Lower
bounds of covering minima have been heavily studied, already by Kannan and Lovasz
([14]), where they give lower bounds on covering minima which include the lattice
point enumerator. Moreover, Merino and Schymura in [9] translate the conjecture of
Makai Jr. ([20]) to the language of the first covering minimum, which then resembles
Minkowski’s First Fundamental Theorem 1.26, and furthermore raise questions of what
is the exact bound if we replace the first covering minimum with an arbitrary one, as
well as if we study the product of all covering minima with the volume in the vain of
Minkowski’s Second Fundamental Theorem 1.27. For an overview of inequalities and
open questions of this form, we refer to [9], as well as [11] for some similar problems.
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2.2 Known Values of all Covering Minima

Since Proposition 2.11 gives a way to see lower bounds for covering minima for a con-
crete convex body, we can show the first example of calculation of all covering minima
for a convex body.

Example 2.13. The covering radius of the standard hypercube is 1;,(C;) = 1. This can be
seen by noticing that for every 0 < e < 3, the (d — i)-dimensional affine subspace given
by 14+ {z = (21,...,24) € R* | 2y = --- = x; = 0} does not intersect (3 —¢)Cy+ 2%, so by
the definition of covering minima, ;(Cy;) > 3. For the other inequality, notice that the
projection of Cy to the i-dimensional linear subspace spanned by the first i coordinate
axes is C;, and since ;(C;) = 3 (Example 1.41), by Proposition 2.11 we get 1;(Cy) > 3.
The covering minima of unimodular simplices were calculated even in [14], but we will
provide a proof in the following proposition that relies on elementary linear algebra for
obtaining the upper bound. Kannan and Lovész in [14] used a more involved tool for
obtaining the upper bound, involving the successive minima (Lemma 4.1). Merino and
Schymura in [9] also commented on how this fact can be seen using the fact that every
affine subspace of dimension d — i intersects some i-dimensional coordinate subspace,

which is the idea that we have encapsulated in Lemma 6.1.

Proposition 2.14. Let S; < R? be the standard d-simplex, ie S; := conv(Dg, €1, ..., eq).
Then, for every i € |d],

11i(Sa) = i.
Proof. (=:) If 7 : R® — R' is the projection to linear subspace spanned by the first i
standard basis vectors, 7(S;) = S; x {04}, and 7(Z?%) = 7' x {04_;}. From Example
1.44, u(S;) = 1, therefore by Proposition 2.11 11;(Sy) = i.
(<:) Let p € R? be arbitrary and vy, ..., vy ; € R? linearly independent vectors. It would
suffice to show that p + spang (vy, ..., v4 ;) N (iSq+ Z%) # &F. Since iSy = {r e R? | z; >
0, Z;-l:l z; < i}, it would be enough to find Ay, ..., \s—; € R such that the sum of (posi-
tive) fractional parts of the coordinates of p + dzl A;v; is at most 1.

7j=1

Since the vectors vy, ...,v,4_; are linearly independant, there exists a set [ € (d[ﬂ) of
coordinates such that the matrix [(v;)i]je[d—iker iS an invertible matrix. Choose the
coefficients A such that they satisfy the (d — i) x (d — i) system of linear equations

Z?;i Aj(vj)y = —pi, for all k& € I. Therefore, the coordinates corresponding to the

indices in the set I of the point p + di Ajv; are 0, therefore have fractional parts O.

There are exactly ¢ coordinates that ajrzlnot in the set I, and therefore the sum of the

fractional parts of the point p + di Ajv; is at most i. O
j=1
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There aren’t many convex bodies for which all covering minima are known.

Merino and Schymura in [9] introduce the following family of polytopes that inter-
polates between the cube and the crosspolytope, and calculate the values of all their
covering minima.

Definition 2.15. Let d € N, and i € [d]|. We define the following d-polytope:
Py :=conv(te;, £---te;, |1<H < <ji<d)=CyniCy.

Specifically, P, , = Cy and Py, = Cj.

Proposition 2.16. [9, Prop. 3.3] For every d € N and i € [d|, we have:

2 , J <1
L >

12

1 (Pai) = {

In particular; 11;,(Cy) = 3 and p;(C}) = % for all i € [d].

1
2
2

The proof of this proposition relies on the fact that the projection of P;; onto an j-
dimensional coordinate subspace L; is either P;; or a hypercube, depending on the
dimension j and parameter i. Then, they bound the covering minima of P, ; from above
by the covering radii of these intersections, which for this family of convex bodies turns
out to be sharp.

3 Lattice Polytopes Maximizing the Covering Radius

An upper bound for the covering radius of lattice polytopes is well known, as well as
what the maximizers are, as seen in the following proposition.

Proposition 3.1. If P € K¢ is a lattice polytope, then:
p(P) <d.

Equality holds iff P is a unimodular simplex.

Proof. LetV < V(P) be any subset of d+1 affinely independent vertices of P. Then S :
conv (V') is a lattice simplex contained in P. It suffices to show p(S) < d, since u(P) <
p(S) from Remark 2.3. Since S is a lattice simplex, there exists a linear transformation
A € 7% of full rank such that S = AS,. Using the properties from Remark 2.3 further,
and the fact that AZ? c 79, we get:

(S, 2%) = (ASy, %) < p(ASy, AZY) = (54, 2%) = d.
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In Proposition 1.44, we have shown that equality holds for S;, and therefore for all
unimodular simplices since the covering radius is invariant with respect to linear trans-
formations, and the image of Z¢ via a unimodular transformation is Z¢. Now, we only
need to show that for any lattice polytope that isn’t a unimodular simplex, its covering
radius is strictly smaller than d.

Let S € K¢ be a lattice simplex contained in the starting lattice polytope P. We can
assume it has vertices 04, v1, ..., vy, since the covering radius is translation invariant.

d
Let IT := {Z a;v; | a; € (0,1], for all i € [d]} be a half-open parallelepiped. We use the
i=1

opposite interval than the one in the standard half-open parallelepiped for convenience,
but all of the corresponding results from Subsection 1.2 still hold. Since IT + Z¢ = R?
by Proposition 1.12, it is enough to show II < dint(P) + Z¢, since that would imply
R =11 + 7 < dint(P) + 74, and by Remark 1.46 that would imply ;(P) < d. Now we
calculate

d d
dint(S) = {Z av; | a; >0, Zai < d} O I\{vy + -+ + va}.

i=1 i=1

By Proposition 1.16, of S isn’t unimodular, there exists a lattice point in a € II\{v; +
.-+ +vy}. Then, for a lattice point b := vy + -+ + v4 — a,

U1+---+Ud€(H\{’Ul+"'+'Ud})+bgdint(s)+b-

Therefore, IT < dint(S) + Z¢ < dint(P) + Z¢, ie u(P) < d.

If S is unimodular, since P is not a unimodular simplex, there exists a vertex vy, ; of P
such that vy, ¢ S. Moreover, we can suppose that vy, ; violates the inequality defining
the facet opposite of 04, since in the beginning we made an arbitrary choice of which
vertex of S to translate to 0.

Let P’ := conv(0g4,v1,...,0q+1) S P. Since v; + --- + vy is in the relative interior of
the facet opposite to the vertex 0, in the simplex dS, it will be in the interior of the
polytope dP'by definition of vy,;. Therefore, I  dint(P') + Z? < dint(P) + Z¢, hence
pu(P) < d. O]

3.1 Non-Hollow Lattice Polytopes

Notice that all the lattice polytopes that maximize the covering radius are unimodular
simplices, and therefore hollow. Codenotti, Santos and Schymura [5] raise the question
of what are the upper bound and maximizers for covering radius in the family of all
non-hollow lattice polytopes in dimension d.
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Since the maximizers in the hollow case are unimodular simplices, a natural candidate
for a maximizer in the family of non-hollow lattice polytopes is the terminal simplex,
which is the most symmetric lattice simplex with one interior lattice point.

Definition 3.2. For d € N, the terminal d-simplex is the simplex T}; := conv(—14, €1, ..., €4).
We say that T' < R? is a terminal d-polytope if T is a lattice d-polytope and can be seen
as a direct sum of lattice translates of terminal simplices.

We can see the terminal d-simplex and the d-crosspolytope, which we get as a direct sum
of d terminal 1 simplices as the two extremums in the family of terminal d-polytopes,
so we can see this as a family of non-hollow lattice polytopes, interpolating between a
simplex and a crosspolytope.

Codenotti, Santos and Schymura propose the following conjecture, and prove it in di-
mensions 2 and 3.

Conjecture 3.3. [5, Conj. A] Let P = R? be a non-hollow lattice polytope. Then

P)< =,
1(P) 5

where equality holds iff P is a terminal d-polyope up to a unimodular transformation.

The covering radius was proved to be equal to the value conjectured here, by Merino
and Schymura.

Theorem 3.4. [9, Prop. 4.8.] For every d € N,

d

w(Ta) = 5
The proof of this theorem is rather involved. It is based on the fact that the cov-
ering radius of the standard simplex S; = conv(0y,eq,...,eq) With respect to a lat-

tice A can be seen as the diameter of the directed quotient lattice graph (Marklof and
Strombergsson,[21], Lemmas 3 and 4). For more on quotient lattice graphs, we refer to
[21].

Additionally, Codenotti, Santos and Schymura ([5], Cor. 2.2) prove that the covering
radius is an additive functional with respect to direct sums of convex bodies and lat-
tices. Because terminal d-polytopes are direct sums of translates of terminal simplices,
we can conclude that the covering radius of every terminal d-polytope is g, which veri-
fies correctness of the values of the covering radius in the the conjectured equality cases
in Conjecture 3.3.

Regarding the covering minima of terminal simplices, Merino and Schymura conjecture
the following:
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Conjecture 3.5. [9, Rem. 4.9] For every d € N and i € [d],

1
pilTa) = 5.
Since projecting 7, to a i-dimensional coordinate subspace gives 7T;, Proposition 2.11

for terminal simplices combined with Theorem 3.4 gives us the following lower bound.

Claim 3.6. Let d € N and i < d. Then:
;
wi(Ty) = 3
Proof. Let w be the projection to the space spanned by the first : coordinate vectors.
7(T,) = T; x {04_;} and w(Z?) = Z¢ x 04_;. From Proposition 2.11 and Theorem 3.4, this
implies y,;(T,) > %. O

This gives one of the inequalities needed to prove Conjecture 3.3. The other inequality
needed would be of the form of an upper bound of the covering minima of a convex
body. The definition of covering minima is technically a tool for obtaining upper bounds,
but checking if a subset of R? intersects all affine subspaces of a fixed dimension is rather
difficult.

The upper bound for the covering radius of an arbitrary non-hollow lattice polytope and
the values of the covering minima of terminal simplices were connected by Codenotti,
Santos and Schymura in the following theorem.

Theorem 3.7. [5, Thm. 1.2] For every d € N, the following are equivalent:
) u(P) < % for every i < d and every non-hollow lattice i-polytope P.
i) p;(T,) = % for every n = d and every i < d.

The implication i) = i) follows from Claim 3.6 and the fact that the i-th covering mini-
mum of 7}, is the maximum of covering radii of rational i-projections of T},, which are all
non-hollow lattice polytopes since T}, is a non-hollow lattice polytope. The implication
i1) = 1) is shown by for a given non-hollow lattice i-polytope P, finding an n € N and
a rational projection 7 : R® — R’ such that 7(7},) = P. Then, since P can be seen as a
rational projection of T,,, + = ;(T,) = (P, n(Z")) = u(P).

Notice that in Theorem 5.1 ii) the value of the i-th covering minimum is required to
be 3 for all terminal simplices, not only for the ones in dimensions up to d, so simple
inductive arguments for proving that ii) holds do not suffice.

Conjecture 3.3 is proven to hold in dimensions 2 and 3 [5, Cor. 3.6, Thm. 3.13]. More
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specifically, they have proven that every non-hollow lattice polygon has a covering ra-
dius at most one, and every non-hollow lattice 3-polytope has covering radius at most
3. These proofs use the classification of inclusion minimal non-hollow lattice polytopes,
which is folklore in dimension 2, and is done in [15, Thm. 3.1] for dimension 3. This
approach requires both the classification of such objects, which is not known in higher
dimensions, and furthermore bounding their covering radii.

From the fact that Conjecture 3.3 is proved in dimensions 2 and 3, and Theorem 5.1,
we can conclude that for every n e N, y(T,,) = 3, p2(T,) = 1 and p5(T,) = 3.
Trying to tackle this problem from the side of Conjecture 3.5 requires understanding
the behaviour of more dificult to grasp functionals (the covering minima) of very spe-
cific polytopes — the terminal simplices. Since the lower bound is already known, as in
Claim 3.6, one of the logical next steps would be to investigate possible upper bounds
on covering minima.

4 Known Upper Bounds for Covering Minima of Convex
Bodies

Kannan and Lovasz give the following upper bound on covering minima, involving the
previous covering minimum and an appropriate successive minimum of the difference
body. We will present the proof of this bound, due to Kannan and Lovéasz, to emphasise
the fact that last covered subspaces can be used as a tool for translating results on
covering radii to results on covering minima.

Lemma 4.1. [14, Lem. 2.5] For a convex body K € K¢ lattice A € £ and i € [d], the
following inequality holds:

pi1 (B A) < (K A) + Aai (K — K A).

Proof. Denote by p; := 1;(K,A) and by \; := N\;(K — K, A) for all i € [d].

First, let’s prove this claim for i = d — 1. Let v € Ay - (K — K) be a non-zero lat-
tice vector. Since all covering minima and successive minima of the difference body
are translatory invariant, we can translate K so that 0;,v € \K. Let p € R? be ar-
bitrary. By the definition of the (d — 1)-st covering minimum, py ;K + A has to in-
tersect the line p + spang(v). Therefore, there exist z € K, a € A and ¢ € R such that
p—tv = pg_1x+a. Then, p = pg1x+(t—|t|)v+|t]Jv+a. Since v € \; K, and 0,4 € K, from
t—|t| € [0, 1) we can conclude (¢ —|t]|)v € A\; K. Moreover, since 0, € K and K is convex,
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pa—1x + (t = |t])v € (g + M) K. Since a, |t|v € A, this means that p € (ug_1 + M) K + A,
ie p1g < pa—1 + A1

For i € [d — 2], we will make use of the notion of last covered subspaces. By Lemma
2.9, there exists a last covered subspace L € Ay ; 1(RY). Denote by K' := 7. (K),
A" := w1 (A), and by ', iy, N, the corresponding covering radius, minima and succes-
sive minima for j € [i + 1]. By Remark 2.12, u;,; = /. From the first part of this
proof applied to the convex body K’ and lattice A’, we can conclude p/ < pf + M.
Since the i-th covering minimum is the maximum of covering radii over all rational
projections of dimension 4, and the set of all rational i-dimensional projections of R?
with respect to A is a superset of all those of 7. (R?) with respect to A’, we see that
pr < . Letwy, ..., v4—; € A\g—;(K — K) be linearly independent lattice vectors. Then,
since dim(Ker(m;1)) = d — ¢ — 1, there has to be at least one non-zero vector among
mri(v1), ..., mpi(vgi) € Agi(K' — K'). As all of them are lattice vectors, this implies
A} < Ag_;. Therefore, ;1 =/ < p, + N] < i + Aas. O

In [11], Henk, Schymura and Xue notice that in this proof, we can replace the successive
minima with yet another functional, packing minima, and the same proof suffices. We
refer to [11] for a review on packing minima.

Example 4.2. This upper bound will be sufficient for calculating all the covering minima
of the d-crosspolytope. Namely, since the projection of C to the first ¢ coordinates is
Cr, we know 1;(Cy) = p(C}) = L (Example 1.42). From Example 1.24, we know
for all j € [d] that \;(C}) = 1, and therefore \;(C; — C¥) = X\;(2C%) = 1. Since
p (CF) = w(%;) = 1 by Example 1.39, successive application of Theorem 4.1 gives us

w(C5) < m(Ch) + (i - 1) = 4.

Since successive minima as well as difference bodies are also difficult to calculate, the
next bound given by Kannan and Lovasz modifies the previous one to involve the first
covering minimum, ie the reciprocal of the lattice width, instead of the succesive minima
of difference bodies.

Lemma 4.3. [14, Lem. 2.6] For a convex body K € K%, lattice A € £¢ and every 1 < i <
d—1,

,qu(K, A) < ,UZ(K, A) + C(’L + 1)/1,1([(, A),
where c is an absolute constant.
The proof of this lemma for i = d—1 follows by plugging \ (K —K, A)\ ((K—K)*, A*) <
cd, and gy (K, A) = M ((K — K)*, A*) into the previous lemma. This inequality is a con-

sequence of Minkowski’s First Fundamental theorem 1.26 and the fact that there exist
absolute constants ¢y, co such that for every d-dimensional o-symmetric convex body,

;—i < vol(S) vol(S*) < ;—gd. The lower bound, which is the one we use, is due to Bourgain
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and Milman ([2]), and it was conjectured by Mahler ([19]) that ¢; = 4, with equality
holding for the hypercube, but also for the crosspolytope and a whole family interpo-
lating between the two. The upper bound is due to Santalé ([24]), and equality holds
for a ball. The absolute constant ¢ in the statement of this lemma is actually é, which
means that ¢ > 1. For the cases i € [d — 2], it is again sufficient to reduce to the first case
by looking at last covered subspaces.

The following theorem is Kannan and Lovdszes main bound on covering minima, and
comes directly from sucessively applying the previous lemma.

Theorem 4.4. [14, Thm. 2.7] For a convex body K € K¢ lattice A € L and every
1<i<d—1, |

where c is an absolute constant.

)Ml(KaA),

When restricting to o-symmetric convex bodies, the following result is proven.

Theorem 4.5. [14, Thm. 2.13] For a o-symmetric convex body K € K¢, lattice A € L
andevery 1 <i<d-—1,

It is again sufficient to prove this for i = d — 1 and reduce the other cases to that
one by observing last covered subspaces. The proof utilizes the norm defined by the o-
symmetric body, and the methods used cannot be generalized to general convex bodies.

5 Upper Bounds via Projections

One of the tools introduced in [5] gives upper bounds on the covering radius of a convex
body, given in the next lemma.

Lemma 5.1. [5, Lem. 2.1] Let K € K% be a convex body containing the origin, and let
7 : R? — R! be a linear projection to a rational I-subspace. Let Q = K n 7 '(0) and let
L = 7 1(0) be the linear subspace spanned by Q. Then, we have

WK, 2% < (@, 2% n L) + p(n(K), m(27).

We generalize this to a similar upper bound on the covering minima of a convex body
via the covering minima of its projections and intersections with rational subspaces.

Notation 5.2. For K € K% and A € £¢, for notational convenience we additionally define
po(K, A) := 0. Notice that this definition agrees with the definition of covering minima,
because indeed, 0K + A = {04} + A = A intersects R?, which is the only d-dimensional
affine subspace od R<.
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Theorem 5.3. Let K € K% A € £L? and V < R? a rational linear subspace of dimension |
and i € [d]. If by 7y we denote the natural projection of R? to V, the following holds:

pal K A) < gy (K, my(A) + iy (K 0 VEA AV
0<i—j<d—I

Proof. By definition, y; (K, A) is minimal such that x,; (K, A) K + A intersects every (d—1)-
dimensional affine subspace of R?.

Let x + y + U be an arbitrary (d — i)-dimensional affine subspace of R¢, where z € V,
y € V4, U < R? linear subspace.

Let Uy = my(U) and Uy1 = U n V*. Notice that if we look at the restriction my |y, Uy is
the image of this map, and Uy it’s kernel, therefore dim(U) = dim(Uy ) + dim(Uy ).
Let dim(Uy) =1 — j, dim(Uy1) = (d — 1) — (I — j) = (d — 1) — (i — j). For brievity, let
pj o= py(my (), mv(A)) and pij == pij(K 0 VAN V).

Since x + Uy = v+ my(U) = my(x + U) is a (I — j)-dim affine subspace of V, there exist
uy € U, pe K, a € A such that

z +my(ur) = pymy(p) + mv(a)

Let yu, = w1 — my(uy), yp = p — mv(p) and y, = a — my(a). Notice that y,,, vy, ¥. € V*,
and because V' is a linear space, y' := y + yu, — iy, — Yo € V. Since (y + U) n V' =
Y+ Un(—y+VH) =y +{UnV+%)isa ((d—1)— (i — j))-dim affine subspace of V-,
there exist u, € U nV+, ge K and be A n V+ such that
Y +us = jq+b
=Y+ Yuy — HiYp — Yo + U2 :Niij+b
Now, adding up the two equalities we get:

T+ my(Ur) + Y + Yuy — Y — Yo + Uz = pimy(p) + v (a) + pi—jq + b

=+ y+my(ur) + Yu, +u2 = pi(mv(p) + yp) + mv(a) + uy, + pi—jq + b =
=x+y+u +u=pup+at+pi—jqg+o

Hj Hi—j
=T +y+u+us = (uj + fi—j) (uj+uijp+ Mj+uijq> +a+b.
Here, LHS is in x + y + U, and RHS is in (x; + p1,—;) K + A. Since x +y + U was arbitrary,
max{;(my (K), 7y (A) + iy (KA VEAAVE) [0< 5 <1,0<i—j <d—I1}K intersects
every (d—i)-dim subspace of R?, therefore y;(K, A) < max{u;(my (K), 7y (A)) +pi—j (K N
VEAAVH|0<j<,0<i—j<d-1}. O
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5.1 Covering Minima of Direct Sums

Motivated by the conjecture that the terminal d-polytopes are the family of maximizers
for the covering radius in the family of non-hollow lattice polytopes, and the connection
of this conjecture to specific values of the covering minima, we want to investigate how
these functionals behave with respect to direct sums.

It is known that the covering radius is an additive functional with respect to direct sum,
as can be seen in [5, Cor. 2.2].

On the other hand, the lattice width is not an additive functional with respect to direct
sums. The lattice width of the direct sum is the minimum of the lattice widths of the
summands [6, Thm. 2.2]. We connect these two results, and give the answer to the
question of how covering minima interact with direct sums in the following theorem.

Theorem 5.4. Let R = V@ W, dim(V) = [, dim(W) =d -1, K €V and L € W convex
bodies that contain the origin, A € V and I' € W lattices, and i € [d]. Then:
p(K@LA®T) = max  p;(K,A) + pi (L, T).
O<ij<d—1
Proof. (<:) By using Theorem 5.3 to the subspace V, we get the statement as V- = W
and by the definition of direct sum, 7y (K @ L) = K, 7y (A@T) = A, (K@®L)nW =L
and (A@T)n W =T.

(>:)Forall jsuchthat0 < j </and 0 < i—j < d—I, we want to show p;(K@L, A®I') >
:uj(K7 A) + :UJi—j(L7 F)

First, from the definitions of direct sums of convex bodies and lattices, we notice
that every projection 7 to a i-dim rational subspace of V has n(K @ L) = n(K) and
T(A®T) = w(A), therefore p;(K ® L ADT) = (K, A) (if i < [, ie if p;(K, A) makes
sense, then). Similarly, when it makes sense, 1;(K ® L,A®T) > p;(L,T).

Now, we can assume j,i — j # 0, or moreover, p; := pu;(K,A) > 0 and p;—; :=
pi—i(L,T') > 0.

Suppose the countrary, and take 0 < ¢ < p; and 0 < ¢ < p,;—; such that ¢ + ¢ =
pi(K @ L,A@T). Then there exists a (I — j)-dimensional linear subspace Uy < V and
x € V such that (z + Uy) n cK = ¢J; similarly, there exists a (d — [ — i + j)-dim linear
subspace Uy < W and y € W such that (y + Uy ) n 'L = .

Since (K ® L, A®T) =c+and 2+ y + (Uy ®Uw) is a (d — i)-dim affine subspace
of R%, it intersects (¢ + ) (K ® L) + (A®T), ie there exist v e Uy, we Uy, pe K, g€ L,
Ae|0,1],ae Aand be I s.t:

r+y+v+w=(c+)Ap+(1=Ng)+a+b.

Since the sum is direct, this implies t +v = (c+ )Ap+aand y+w = (c+)(1—N)g+b.
Because 0, € K and 04 € L, which are convex sets, \p € K and (1 — \)q € L. Moreover,
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since (z + Uy) ncK = g and (y + Uw) n L = ¢, we can conclude (¢ + ¢’)\ > ¢ and
(¢ +)(1 —A) > . This is equivalent to ¢\ > ¢(1 — A) and ¢(1 — \) > ¢’\, which is a
contradiction.
Therefore, we showed 1;(K @ L,A®T) > p;(K,A) + p;,_;(L,T') for every relevant j, ie
pi( K®L,A®T) = max{y,;(K) + pi—;(L)0<7<,0<i—j<d—1}.

]

Specifically, this is a generalization of the two forementioned results:

* Covering radius of direct sums:

HESLAGL) = pa(KOLABL) = max  p1;(K,A) + pa—;(L,T) =
0<d_j<d—1

= :ul(Kv A) + Nd—l(L7 F) = N(Ku A) + :U’(La F)
* Lattice width of direct sums:

(K® L) 1 1

w = e —

e m(K@LA®T)  max (K, A) + pay(L,T)
0<1-j<d-1

1 B mm{ 1 1
maX{ul(KaA)>ﬂ1(L>F)} - ,ul(KﬂA)’/Ll(Lar)

} — min {wn (K), wr (L)} .

It is interesting that the behaviour of the operator of direct sum for the covering radius
and lattice width can be unified and proved in the same way, going through covering
minima. This raises a question wheter there are more results either on the covering ra-
dius or on the lattice width side that could be modified to work for all covering minima.

Now that we know how all covering minima behave with direct sums, we can see that
knowing all the covering minima of all terminal simplices would also result in knowing
all covering minima of terminal polytopes. More specifically:

Corollary 5.5. Let T be a terminal d-polytope. If we assume that Conjecture 3.5 holds in
all dimensions up to d, ie j1;(T}) = 1, for all j < k < d, then for all i € [d],
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k
Proof. Let k € N, l,...,ly € Ns. t. Y. I; = d and for j € [k], u; € R% such that 0y €
=1

u;+S(1;,11). An arbitrary terminal d-polytope can be seen as T' = (uy + S(1;,41))®- - @
(ur +S(1;,+1)), and this decomposition into a direct sum agrees with the decomposition
of RPintoR* =R @ - - - P R,

Since we assume that Conjecture 3.5 holds in dimensions up to d, we know that for
every j € [k] and every 0 < s < I, ps(u; + S(1;41)) = 3.
For any i € [d], using this and applying Theorem 5.4 we get:

]

Going back to the two equivalent conjectures regarding the upper bound for the cov-
ering radius of a non-hollow lattice polytope, and values of covering minima of the
terminal simplices, using this corollary we get a stronger conjecture, and the associated
stronger version of Theorem as follows.

Conjecture 5.6. For every d € N, every terminal d-polytope T and every i € [d],

Theorem 5.7. For every d € N, the following are equivalent:
D) pu(P) < % for every i < d and every non-hollow lattice i-polytope P.
i) p;(T,) = % for every n > d and every i < d.

i) u(T) = % for every n = d, every terminal n-polytope T' and every i < d.

5.2 Terminal Simplices

Our next goal is to try to utilize the bound we give in Theorem 5.3 to get an upper
bound for the covering minima of terminal simplices. First, notice that the bound from
this theorem depends on covering minima of the projection to a linear subspace, as well
as those of intersections with the orthogonal complement of said linear subspace. One
could notice that in this case, it is convenient to work with coordinate subspaces, since
the projection of a terminal simplex to a coordinate subspace is the terminal simplex of
the appropriate dimension. Now, we would like to investigate what is the intersection
of a terminal simplex and a given coordinate subspace.
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Notation 5.8. For convenience, while utilizing Theorem 5.3, we will just write max
instead of actually writing what values £ takes — it will always be assumed that & takes
values such that all the covering minima in the expression make sense, including 0.

Codenotti, Santos and Schymura in [5] introduce the following family of weighted ver-
sions of terminal simplices which will be of much use for our purposes.

Definition 5.9. Let w = (wy,...,ws) € RY! be a vector of weights. We define the
following family of simplices:

S(w) := conv(wg - (—1),wy - €1,...,wq-eq) € K.
Specifically, S(1441) = Ty.

In the following lemma, we describe the convex body that one gets when intersecting a
terminal simplex with an arbitrary coordinate subspace.

Lemma 5.10. Let i € |d] and let L be a coordinate subspace of R? of dimension i. Then,
TynL = S((7=3 +1, 1,...,1)), where the weight vector has i+ 1 entries, and equality means
really the equality if we restrict to the coordinates contained in L.

Proof. Since T, is symmetric with respect to the coordinate directions, we can assume
L = R x {04_;}. Then, this statement is equivalent to showing 7, n (R* x {04_;}) =

S((ﬁ,l,..., 1)) x {04—;} = conv(4= z+1( 1;),e1,...,€;). '
(2:) Since ey, ..., e; are contained in Ty = conv(—14,€1,...,¢e4) and R* x {0,_;}, and
1 1
d—z’+1( ) d—i ]Zlild—wrl]

is also contained in both 7; and R’ x {04 ,}, their convex hull is contained in T; N (R® x
{04-i}).

d
(c:) Let 2 = ap(—1,) + Y, aje; be an arbitrary element in 7, n (R* x {0,_;}), where
j=1
d
a; 2 0and > a; = 1. Thenforalli+1 < j <d, a; = ap because the last d —i + 1
j=0
coordinates have to be 0. Rewriting, we get:

d i
. 1
= (—]ld + Z €j> —i—j;ajej = (d — 1+ 1)040 (m z ) Z a;e;

j=i+1

i d
Since (d—2+1)060+ Z a; = Z o = 1, it follows that = € COHV(d_;_i_1 (—11), €1,... ,€i). O
j=1 j=0
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From this lemma, we can see that for explicitly utilizing our projection bound to termi-
nal simplices, we would have to know all the values of covering minima of weighted
versions of terminal simplices. In [5], Codenotti, Santos and Schymura propose the
following.

Conjecture 5.11. [5, Conj. 5.3] For every w € RE)! with wy < --+ < wy, and every i € [d],
the i-th covering minimum of S(w) is attained by the projection to the first i coordinates,
ie:

1
WiWi

0<j<k<i

pe(S(w)) = =5
Z 1

=0

Of course, assuming that this conjecture is true would include assuming we know all
covering minima of terminal simplices, since S(1,,1) = 7,. Nevertheless, this Conjec-
ture is known to hold for ¢ = d (Theorem 6.4) and i = 1, because the covering radius
of line segments is known and therefore is less difficult to check manually what the
first covering minimum of a convex body is. Since the case i = d is of no use for our
projection bound, we will utilize the case where the intersection is of dimension 1, ie
projection is to a d — 1 dimensional coordinate subspace.

Corollary 5.12. For every d € Nand 2 < i < d,
1 &G d—j
i(Ty) < 5 —
pi(Ta) 2+j2d :

Proof. Observe the coordinate hyperplane L = R4~ x {0}. Then, 7 (Ty) = Ty_; x {0},
and as seen in Lemma 5.10, T; n Lt = {041} x S(3,1) = {041} X conv(—3eq, eq).
Since the ambient space does not matter for covering minima purposes, and 77 (Z%) =
7771 x {0} and Z? n L+ = {04_1} x Z, we can just see these as T,_; and [—1, 1] in
corresponding standard lattices. Notice also that u([—3,1]) = d;il, since the covering
radius of every segment is just the scaling needed to get its lenght to be 1. Then,

Theorem 5.3 applied to T, and L gives the following:

1

d
wi(Ta) < max p(Ty1) + Mz;k([—c—i, 1]) = max {,ui(le), i1 (Ty 1) + o 1} _

Notice that on the right hand side, the dimension of the terminal simplices observed has
dropped. By successive application of this inequality, we can get to one of the values
that we know - the first covering minimum of a terminal simplex, or the covering radius
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of a terminal simplex. Specifically, by applying this inequality to the first element in the
set we're taking the maximum of, we get:

(i) < e (i) (Taca) 4 s (T + 747

Let’s first prove p1;(T,) < max{%, pi—1(Tu-1) + 75}

Since T;_, prOJects to Td » when projecting out the last coordinate, p;_1(Ty—2) < pti—1(Ty—1)-
Additionally, &4 < -4, therefore 11 1(Ty—2) + &t < pi1(Ta1) + 7%, and the for-
mer can be removed from the set we are max1mlzmg over. This brings us to u;(Ty) <
max{u;(Ty_2), pi—1(Ty_1) + #‘ll}, ie we just dropped the dimension of the terminal sim-
plex by 1 again in the first element of the set we’re maximizing. Repeating this process
d — i times in total, we get to the covering radius of a terminal simplex, which is a value

we know:
(Ty) < max { p;(Ty), prir (T, )+L = max Lo (. )+L
Hillq a i\ L)y i1\ Ld—1 d 1 a 27#171 d—1 d 1(-

Applying this inequality to the term y; 1(7}; 1) on the right hand side, we get:

1 1—1 d d—1 d
T, -4 io(Ty o) + —— + —— .
Hi(Ta) < max{z > tagprreela) d+1}
Now, notice that since d > 1, ;4 > 3, ie ‘52 + 2% > £. Moreover, for every 0

<
, % > 5. Therefore, applying the inequality p,; ;(T;_;) <
max{ S, jt;_;_1(Ty_j_1) + %} successively ¢ — 1 times for 0 < j < ¢ — 2 brings us

to:

i— i— 1 i—2 d—j
,Uz(Td) maX{ + Z 7;“1 d z+l + Z } -+ Z - . -
d— j+1 j=0d—j+1

j < i, since d > 1

6 Upper Bounds via Intersections

In the proof of [9, Prop. 3.3], Merino and Schymura implicitly use the following, which
we will prove explicitly since the second upper bound for covering minima we give will
derive from this observation.

Lemma 6.1. Let fi,..., f; be a linear basis of R%. Then, for every i € [d] and for every
Ue Ay i(R?Y), there exist 1 < j; < jp < -+ < j; < d such that

U nspang{fj,,..., [i,} # &.
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Proof. Write down the affine subspace U in the given basis as a translate by the vector
d

d
>, «; f; of the span of d — i linearly independent vectors > A, fx, for 1 <1< d—i:
j=1 k=1

d d
U=Zajfj+span[R{Z)\lkaﬂle[d—i]}.

im1 k=1
If we view this linear subspace as a (d — i) x d matrix A = [N g]ica—iefq € RE*¢

d

linear independence of >, A\, fx, for 1 <[ < d — i, which are exactly the row vectors
k=1

of this matrix in the given basis, implies that the rank of this matrix is d — i. Therefore,

only by using row operations, we can find an equivalent matrix A’ € R(¢~9*¢ which has
a (d —i) x (d — i) submatrix which is up to column swaps, the identity matrix. Without
loss of generality, suppose that A’ has exactly the (d — i) x (d — i) identity matrix as its
first d — i columns. This assumption corresponds to swapping the indices of the original
basis vectors, or in the language the he teorem is stated, its forcing {j;,...,J;} to be
exactly the set {d — i+ 1,...,d}. Let

L O - 0 ANjn - g
/ !
s o1 -0 Ad_f+172 T )‘d,2 e Rld—1)xd
00 - 1 N jjiami 0 Aas

Since we got from A to A’ just by row operations, their row vectors in the given basis
have the same R span, ie

d
SpanR{ZAz,kfk|l€[d—i]}=Spanue{ 2 Nfe [ Le[d ]}

k=1 k=d—i+1

d
Now, since U = Z a;f; + spang {gl = fi+ Z Mo | leld— ]}, let’s find one

J=1 k=d—i+1
element in U m spang{ f4_i+1, .-, fa}-
d—i d d—i d
Us Zajf] Di—a)g =Dl aifi =D o (fz + )] A;,kfk> =
j=1 =1 j=1 =1 k=d—i+1
d d—1 d—1 d d—i
= > aifi =D aufi =) Z Nafe= D, aifj— Z ( 041) NS =
Jj=1 =1 =1 k=d—i+1 j=d—i+1 k=d—i+1 \l=1
d d—i
= > <ak - ( Oéz) /\Ek> [ € spang{ fa—i+1,. ... fa}.
k=d—i+1 1=1
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Therefore, U m spang{ fs_i11,-- ., fa} # O, ie every (d — i)-dimensional affine subspace
of R intersects some coordinate i-dimensional subspace in any basis. O

Given this lemma, we know that every affine d—i subspace has to intersect at least one of
the - dimensional coordinate subspaces. Therefore, any set covering all i-dimensional
coordinate subspaces has to intersect every affine d — i subspace. We will use this to
derive the following upper bound on the i-th covering minimum of any convex body.

Theorem 6.2. Let K € K% A e £ and let {f, ... f4} be a basis of A. For I € ([‘Z]), denote
by L; = spang{f; | i € I} the i-dimensional linear subspace of R? corresponding to I and
the given basis. If for every I € (1), dim(K n L;) = i, then:

)

1s(K, ) < max {ﬂ(K ALLANL)|Ie ([?]) } |

Proof. Let U be an arbitrary (d — i)-dimensional affine subspace of R¢. By Lemma 6.1,
there exists [ € ([?]) such that U n L; # 4. Restricting to L;, since K n L; is full
dimensional and An L, is a lattice in L; since f1, ..., f, is a lattice basis, by the definition
of covering radius:

WKLy, An L) (KnL)+AnL;=1L;

@M(KﬁL[,AﬁL[)K—FAQL[
= (uWKNLLANL)K+AN)nU22LinU # &

Let t > 0. The previous calculations imply that for (tK + A) n U to be nonempty, it
is enough for ¢ to be greater or equal to u(K n L;, A n L;). Therefore, for tK + A to
intersect all (d — i)-dimensional affine subspaces, it is enough that ¢ is the maximum of
these values when we iterate 7 e (). O
Remark 6.3. Notice that the supposition of all coordinate intersections of dimension
i being full dimensional is not that harsh — covering minima are translatory invariant,
so for every convex body it suffices to translate it so 0, is in the interior. Nevertheless,
the bound is not translatory invariant and we give it in this level of generality because
for example this supposition holds for S; and the standard basis ey, ..., e; of 74, and is
going to be sharp when viewing S, as is, without translating 0, into the interior.

6.1 Terminal Simplices

We would like to see what the upper bound we obtained in Theorem 5.3 is for the family
of polytopes we are the most interested in — terminal simplices. To get explicit numbers,
we need a result due to Codenotti, Santos and Schymura ([5]), where they calculate
the covering radii of weighted versions of terminal simplices.
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Theorem 6.4. [5, Theorem 1.4] For every w € R+ we have:

>0

Notice that this theorem is a generalization of Theorem 3.4. The proof of this theorem
relies on the construction of certain regions, which can be seen as regions induced by
a hyperplane arrangement, and furthermore analysing the alcoved arrangement, whichs
description can be found in [1]. Then, they reduce the problem of finding the covering
radius of S(w) to the problem of finding a certain last covered point in a cell of this
arrangement, which in this case can be reduced to a system of linear equations.

In the next corollary, we give another improvement on the upper bound for the covering
minima of terminal simplices.

Corollary 6.5. For d € N, i € [d], the following inequality holds:

i d—i
(1) <~ (1
i) 2( +d+1)

Proof. The goal is to use Theorem 6.2 for the standard basis vectors.
First, notice that T, is symmetric with respect to the standard basis vectors, so the bound
from Theorem 6.2 becomes:

piTa) < (T 0 (R x {0a-i})).-

Recall that Lemma 5.10 gives us that 7; n (R* x {04-;}) = S (77=7,1,...,1) x {Oa_s}.
Now, from Theorem 6.4 we conclude:

u(S(;,l,...,l)) _d-id ) (1) dimP it SR

d—i+1 (d—i+1)-1+1-()) d+1

2d+1) 2 d+1 2

2i — i +i  i2d—i+1 z( d—z’)
= 1+

6.2 Locally anti-blocking Bodies

Our next goal is to find a family of convex bodies for which our bound given in Theorem
6.2 is sharp. The following definition is due to Kohl, Olsen and Sanyal ([17]).
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Definition 6.6. A convex body K € K¢ is called locally anti-blocking if for every coordi-
nate subspace L, 7, (K) = K n L.

This family of convex bodies is a generalization of both anti-blocking bodies ([8]) mostly
known in the context of combinatorial optimization and unconditional bodies, which are
heavily studied both in the context of convex geometry and functional analysis. For a
review of all three of these classes of polytopes, we refer to [17].

Notice that for any convex body, the covering radii of projections to coordinate sub-
spaces give lower bounds, and intersections with the same subspaces give upper bounds
for covering minima. Since for locally anti-bocking bodies the projections and intersec-
tions are the same, the following corrolary holds.

Corollary 6.7. Let K € K be a locally anti-blocking convex body and i € [d]. For I e (I7),
denote by Ly = spang{e; | i € I}, where ey, ..., eq is the standard basis of R%. Then:

pa(E) = max {M(K NI | Te ([cﬂ) }

1

Proof. By a direct application of Theorem 6.2, we get the wanted upper bound for
1i(K). By unconditionallity, for every I € ([‘f]), K n Ly = m7,(K), and since L; is a
coordinate subspace, 7¢ n L; = 7;,(Z%) = 7'. By definition of covering minima via
projections to rational subspaces,

MZ(K) = IU’(WLI (K)aﬂ-LI(Zd)) = :u(K N LI)?

and is therefore greater or equal than the maximum of these values. O

7 Comparing Upper Bounds

The goal of this chapter is to compare the upper bounds we obtained in Theorem 5.3
and 6.2 with the already known upper bound involving successive minima due to Kan-
nan and Lovasz, as in Lemma 4.1. We will do this for the few examples of convex bodies
where all the covering minima are known, as well as the family of terminal simplices,
where it is conjectured that y;(7,) = %, and £ is a known lower bound.

We will refrain from comparing with the bound in Theorem 4.4 due to Kannan and

Lovasz, since that result is asymptotic in nature and is far off from all of the other
bounds presented when comparing on specific examples.
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7.1 Unimodular Simplices

As seen in Proposition 2.14, for every i € [d], u;(Sq) = i.

e Kannan & Lovasz bound (4.1)
By Examples 1.25 and 1.31, A\{(Sy — Sg) = -+ = \g(S4 — Sg) = 1 and w(Sy) = 1.
Furthermore, by Lemma 2.6, p;(Sy) = @ = 1. Therefore, the first bound due

to Kannan and Lovasz (Lemma 4.1) is sharp for every i € [d]- i + 1 = p;41(Sy) <
,ul-(Sd) + /\d_i(Sd — Sd) =1+ 1.

e Intersection bound (5.3)

Notice that the unimodular simplex S, can be seen as the d-fold direct sum of unit

d

length intervals with 0, on the boundary, ie S; = @[04, ¢,]. Therefore, we can
j=1

make use of Theorem 5.4, which is a corollary of Theorem 5.3. Specifically,

aj+--Fag=1 <
0<a;<1  J=1

d d d

1i(Sa) = pui ((—B[@d,ej], Z) = max g ([0, ¢5]).

j=1 j=1

Since p1([04, €;]) = 1 for all j € [d], and y, is O for all convex bodies, the fact that
the indices sum up to 7 implies 1;(Sy) = i. Therefore, the bound from Theorem
5.3 is also sharp for the unimodular simplex when projections are appropriately
chosen - the coordinate axes.

* Projection bound (6.2)
Sq is locally anti-blocking since for every coordinate i-hyperplane L, 7.(S,) = S; =
Sq n L, therefore by Corollary 6.7, equality is attained in the bound from Theo-
rem 6.2. Moreover, since all coordinate intersections are unimodular simplices of
lower dimension, this is a way to calculate all covering minima of all unimodular
simplices utilizing the value of covering radii for all unimodular simplices.

7.2 Hypercubes

For a hypercube C; = [-1,1]¢, we know from Example 2.13 that u,(Cy) = -+ =
pa(Ca) = 3

* Kannan & Lovasz bound (4.1)
Since C; — C; = 2C; and all the successive minima of the hypercube are 1 (see
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7.3

Example 1.23), \{(Cy — Cy) = -+ = X\g(Cy — Cy) = % Additionally, from Example
1.38 we see 1 (Cy) = @ = 1. Therefore, the bound in Lemma 4.1 is not sharp
at any step, ie 3 = 1;41(Ca) < pi(Cy) + Aa—i(Ca — Cyq) = 3 + 3 = 1. By successive
application of this bound, one would get ;(Cy) < 2.

Intersection bound (5.3)
Theorem 5.3 is also not of much use in this case. Specifically, if we take a projec-
tion to a coordinate j subspace L, it gives

1
§ = Nz(cd) < m]?X[Lk(ﬂ'L(Cd), WL(Zd)) + ui,k(C’d M LJ‘, Zd M LJ') =

1 1
= mkaxuk(C'j) + ui,k(Cd,j) = 5 + 5 =1.
If L is not a coordinate subspace, even though the summand coming from the
projection becomes much smaller because the lattice gets denser, the summand

coming from the intersection gets much bigger and makes the bound worse.

Projection bound (6.2)

The hypercube is again a locally anti-blocking body, therefore the bound from
Theorem 6.2 will be sharp. Similarly to the case of the unimodular simplex in
Section 7.1, for a i-dimensional coordinate subspace L, Cy; n L = C;. Therefore,
this bound reduces the calculation of all covering minima of hypercubes of all
dimensions to calculating covering radii of all hypercubes.

Crosspolytopes

Kannan & Lovasz bound (4.1)
As already discussed in Example 4.2, for every i € [d], 1;(C}) = 4, and the succes-
sive minima bound is sharp in this case.

Intersection bound (5.3)

Notice that we can see the crosspolytope C as a d-fold direct sum of intervals
d
with 0, in their relative interiors, ie Cf = @) [—e;, e;]. Similar as in the case of the
j=1
unimodular simplices, we can now make use of Theorem 5.3 through the formula
for the covering minima of direct sums in Theorem 5.4, which gives us:

d
pi(Cq) = <(—B[—6j, 1, Z) = mmax g ([—ejie]).
j=1 J=1 aj€{071}
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Since yu; ([—e;, ¢;]) = 3 for all j € [d], and the indices sum up to i, it follows that
11:(C3) = 4. One could notice that while using this bound to calculate ;;(C), we
did not use the symmetry of the crosspolytope to its fullest extent. Specifically,
this whole calculation would work for any direct sum of intervals of length 2 in
their corresponding coordinate axes, containing 0, in its interior. Moreover, 0,
being in the interior or boundary of the segments does not matter at all — if it is in
the interior of all segments, we get a polytope resembling the crosspolytope, and
if its on the boundary of every segment we get a simplex with d orthogonal edges,
and all other options interpolate between the two. The lengths of the segments
do not matter that much either, for segments of lenghts /; < --- < [, the i-th

7
covering minimum of their direct sum would be ), £. One could also notice that
j=1"
here we did not use the fact that the covering radius of a crosspolytope is half of
its dimension, which as seen in Example 1.42 requires a bit of calculation itself.

* Projection bound (6.2)
As in the previous two cases, the crosspolytope is also a locally anti-blocking body,
which when intersected with a coordinate subspace gives a crosspolytope of the
appropriate dimension. Therefore, the intersection bound is also sharp, and can
generate all covering minima of a crosspolytope from knowing the covering radii
of crosspolytopes in lower dimensions.

7.4 Py,

Recall from Section 2.2 for i € [d] the family of polytopes P,; := Cy n iC3, for which
Merino and Schymura ([9]) calculated all covering minima to be:

15 (Pai) = {

Since for i = 1 and i = d, P, is respectively C'; and C,, which we already analized, we
will now focus on the cases 2 < i < d

b) 7]<z
Lo >

1
2
21

e Kannan & Lovasz bound (4.1)

Observe that Cj < P;; < C,, therefore for every j € [d], \;(C3) = N\;j(Pai) =
A;(Cy). Since all the successive minima of C,; and C are 1, so are the successive
minima of F,;. Therefore, \;(Py; — Py;) = A\;j(2Pu;) = 5.

The Kannan and Lovdsz bound is not tight for the first « — 1 covering minima:
s = pj41(Pai) < pi(Paq) + Aa—j(Pa; — Pa;) = 5 + 3 = 1. Moreover, since i > 1, this
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bound is also not tight for any j > i : %l = pj41(Pai) < p(Pai)+Na—j(Pai—Pas) =

Jo4 L _ gt
5% T2 T i

* Projection bound (5.3)

Notation 7.1. For convenience, for | < i define P,; = C; niC} = ().

Notice that for a j-dimensional coordinate subspace L;,
WLj(Pd,i) = Pd,i M Lj = Cd M ZC; M Lj = Cj M ZCJ* = Pjﬂ

Therefore, Theorem 5.3 for F,; with respect to the subspace L; gives:

w(Pas) < max e (Pji) + pi—i(Pa—ji)-

Our goal now is to see in which cases an appropriate choice of j can give us the
tight bound.

If [ < i, the left hand side is %, and however we choose 1 < j < d — 1, there will
exist a k on the right hand side such that i (P;;), fu—r(Pa—ji) # 0. Since both of
these values are at least %, the best we could hope to get in this case is j;(P;;) < 1,
which is not sharp.

If1 >, u(Py;) = % Notice that if for all viable k& on the right hand side, k& > i
and | — k > i, we would get £ + =% = L on the right hand side, ie the tight up-
per bound. If these two inequalities are not satisfied, this bound will not be tight
since one of the covering minima would be , which would in that case be strictly
bigger than % or lg—f Now, let’s see when these two inequalities can be satisfied
for all k. Firstly, max{0,! + j — d} < k < min{j, [} are all the & that we should take
into consideration in Theorem 5.3. The inequalities we want to hold ammount to
i < k < l—i. Therefore, it would suffice if i < max{0,/+j—d} and min{j,{} <[—i.
This is equivalentto !l + j > d, j < land d — (I — i) < j <l — i, where we see that
the first two inequalities are redundant. Therefore, the appropriate j such that
the projection bound onto a coordinate j subspace would give us the sharp upper
bound for 14(P;;) would be any d — (I — i) < j <[ —i. Notice that such a j exists
if and only if { —i > 4.

* Intersection bound (6.2)
Concerning our intersection bound — P,; are locally anti-blocking bodies, so by
Corollary 6.7, it is always tight. Specifically, the proof of this Corollary actually
mimicks the calculation of the covering minima of P, in [9].

The following table summarizes the previous comparisons.
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Kannan & Lovasz (4.1) Projection bound (5.3) Intersection bound (6.2)
Saq tight tight tight
Cy not tight, 41 off not tight, $ off tight
(O tight tight tight
Py, not tight tight in dimensions > i + %l tight

7.5 Terminal Simplices

Regarding Terminal Simplices, we don’t know the values of their covering minima,
therefore we can only compare upper bounds amongst each other instead of talking
about when they are thight. The bounds that we will take into consideration are:

L pi(Ta) < i
This bound comes from the fact that the i-th covering minimum is the maximum of
covering radii of i-dimensional rational projections, the fact that lattice polytopes
project to lattice polytopes, and Proposition 3.1.

2. pi(Tu) < %
This bound comes from the fact that covering minima are monotone with respect
to the index, therefore 11;(T) < pa(Ty) = p(Ty), and the latter is equal to ¢ as in
Theorem 3.4.

i—1)d
3. [,L,(Td) < % + % =: B;f,LL

This bound is obtained by successive use of Lemma 4.1 and the fact that y, (7}) =
5, together with the fact that \;(T, — T;) = ;% for all i € [d] (see [4], proof of
Proposition 3.12).

d—j -
4. pi(Ta) < 5 + 2 g = Bl
.7_

This is the bound from Corrolary 5.12, which was obtained using the projection
bound from Theorem 5.3.

5. walTa) < § (14 54) = By,
This is the bound from Corrolary 6.5, which was obtained using the intersection
bound from Theorem 6.2.
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Comparing ¢ and B ;:

We can calculate By, = £ (1+4+) = £ + SEZZ% =i- Z&Tl
i(i+1)

an improvement of the y;(T,) < i bound by a linear factor of 3 5 +1) We can also
notice that this improvement is significantly better for bigger values of i then for
smaller ones.

and see that this is

Comparlng 5 and Bj;:

( - _ i(d—i)
Calculating By, = —+ AT = —+ ST =3 5T T)
is better by a linear factor of % which is strictly positive for all i < d. This

improvement is significantly better for smaller values of i than for bigger ones, but
that is because the bound of ¢ is sharp for i = d and doesn’t get better by varying
the parameter i.

—(d-D)(d+1) _ 4 (d-i)(d+1-9)

, we see that Bj);

Comparing ¢ and B ;:

1—2 1—2 1—2
: 1 d— 1 : 1 : 1 1
By calculating BY; = 5+ 2 g5y =5 +i—1— 2 ;g =i — <§+ > m),
j=0 7=0 7=0

=
we see that B], is always better.

Comparing ¢ and B} ;:

To compare Bj,; and y;(T,) < p(T,) = §, we calculate B}, = 3+ Z (o)1)

2T £ 2(d—j+1)
i—2
) d—ji—1 _d—j—-1 . . d—i _d—j—1
st 2 Wi = Z sy |- Notice that for a fixed d, Z ISy

is a monotonely decreasing functlon of i, and that it is positive for i = 1 and nega-
tive for i = d — 1. Therefore, for i small with respect to d, the bound Bj, is better
than the bound ¢, and worse for i big with respect to d.

Comparing B and B :

We want to see for which pairs of d and 7 is B}, < BFF. Let’s transform BYF so
it’s more convenient to compare to BY, in the given form. BXL = 1 + d

2 d+1
i—1)(d+1 i—1)(d—1 i 1—1)(d—1 i 1—1)(d—1
%—F ( 2(3113 ) 2(3[11) ) = 5+ Gl 2(2[(“) ) - i (1 + el Z.(;J(rl) )). Therefore, B~ < Bgy,

dt < D e i(d—i) < (i—1)(d—1) = (i — 1)(d— i) + (i — D)2
Subtracting (i — 1)(d — 1) from both sides of this inequality, we get d —i < (z’ —1)2

Transforming this a bit more, we see that it’s equivalent to (i — —) >d— Finally,
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we can conclude that By, is better than the Kannan and Lovész bound if and only

ifi>4/d—2+ 3.

* Comparing BX and B7 .:
. . . d—j T KL
Since for every 1 < j < i — 2, ;=5 < 75, we can conclude that Bj; < B;;" for

all all d and 7 > 2, and we see that the bounds are the same for i = 2.

d

* Comparing By, and By ;:
Since B}, < Bj/" holds for all d and i, and there exist cases when By, > BJ\}, we
know at least in those cases that Bj; < Bj,. However, for bigger values of i, the
B, will be better than B7,;. We will not provide in closed form when exactly this
happens, but since we have shown that for all pairs of d and i By; < 4, and that if
i is big enough compared to d, B}, > £, this implies that in those cases By, < Bj..
This fact can be also seen by noticing that B, — By, , = 757 < 7955 = Bj, — BI,,
for all i < d, and even though the Bj; starts off better for small i, this difference

is big enough to push the B}, over By, for big i with respect to d.

In the following table we present the calculations of the conjectured values £, Kannan
and Lovaszes B[ and our bounds Bj, and By, for the covering minima of the simplex

T1000-
! 15 45 46 100 500 700 800 999

bound
% 7.50 | 22.50 | 23.00 | 50.00 | 250.00 | 350.00 | 400.00 | 499.50
BKL | 13.99 | 43.96 | 44.96 | 98.90 | 498.50 | 698.30 | 798.20 | 997.00
By, 13.99 | 43.96 | 44.95 | 98.90 | 498.31 | 697.80 | 797.40 | 992.35
B, 14.88 | 43.97 | 44.92 | 94.96 | 374.88 | 454.90 | 479.92 | 500.00

Table 1: Values of bounds on ;(T1000), rounded up to 2 digits

From Table 7.5 we can notice that the improvement of Bj, compared to Bf/ is not

significant. Nevertheless, we have proved that it will always be a better bound. We can

also notice that for d = 1000, the By, becomes the best bound for i = 46, and becomes

significantly better for bigger ¢, being just around } away from the lower bound that is
d—1 d—1

conjectured to be sharp for i = 999. In general, By, | — %5~ = Hdr Ty’ therefore this

bound proves that the value of the (d — 1)-st covering minimum of 7} is in an interval
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smaller than 1.

7.6 General comparisons

Throughout this section, we highlight some important differences between the three
upper bounds on covering minima. Firstly, the bound due to Kannan and Lovéasz de-
pends on the successive minima of the difference body. Moreover, looking at the proof
of Lemma 4.1, we do not see a class of convex bodies for which this bound will be sharp.

Our projection bound depends on calculating the projection and intersection of the con-
vex body with respect to the chosen subspace and its orthogonal complement, and the
covering minima of those convex bodies. The positive aspect of this is that it does not
depend on successive minima, as the recursive connection between covering minima
seems more natural. However, there does not exist an algorithm for calculating cover-
ing minima of rational polytopes. As seen in Theorem 5.4, this bound will be sharp for
all convex bodies that can be decomposed into a direct sum. However, the result pre-
sented there does still depend on smaller covering minima of convex bodies of smaller
dimension, which are again hard to calculate, but it is effective in the sense of it’s re-
ducing a problem into the same problem in smaller dimensions. We do not know when
exactly this bound will be sharp, but we assume that this bound will be close to optimal
when the convex body can be well aproximated with a direct sum of “simpler” bodies.
We would also like to point out that the generality in which this bound is given, leaves
a lot of degrees of freedom in the choice of which subspaces the bound will emphasise.

As for our intersection bound, it is the best one in the sense of dependencies — it depends
only on intersections of the convex body with coordinate subspaces, and the covering
radii of those. This is a positive, since there exists an algorithm for calculating the cov-
ering radius of rational polytopes. As seen in Corollary 6.7, this bound will be tight for
all locally anti-blocking bodies, but the equality case might not be limited to just that
family. It is also worth mentioning that this bound is tight for all convex bodies whose
covering minima are already known.
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