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Introduction

The covering minima are a sequence of d functionals on the space of all d dimensional
convex bodies, which depend on a fixed lattice. They were first introduced by Kannan
and Lovász ([14]) and were shown to interpolate between two already known func-
tionals – the reciprocal of the lattice width, and the covering radius. The lattice width
quantifies the minimal number of parallel copies of a lattice hyperplane that intersect
the convex body, or in other words – how ”flat” a convex body is with respect to the
lattice. A celebrated result by Khinchine ([16]) is that a hollow convex body, ie one
that does not contain interior lattice points, has to be rather flat – there exists a Flatness
Constant, depending only on the dimension of the body, such that the lattice width of
a hollow convex body can be at most this constant. This result was used by Lenstra
([18]) to show that integer linear programming in a fixed dimension admits a polyno-
mial time algorithm. In the paper where covering minima are introduced, Kannan &
Lovász exploit this sequence of functionals to obtain the first polynomial upper bound
on the Flatness Constant. Values of covering minima that do not coincide with the lat-
tice width or the covering radius are not known for many bodies. Furthermore, even
though there exist algorithms for computing both the lattice width (Charrier, Feschet &
Buzer [3]) and the covering radius (Cslovjecsek, Malikiosis, Naszódi & Schymura [7])
for rational polytopes, there is no known algorithm for finding any other covering min-
imum of a rational polytope.

It is easy to see that the maximal covering radius of a lattice d-polytope is d, and that
the only maximizers are unimodular simplices. As all unimodular simplices are hollow,
Codenotti, Santos & Schymura propose the problem of finding the maximal covering
radius of a non-hollow lattice polytope. This problem was shown to be equivalent to
calculating the covering minima of simplices Td :� convp�1d, e1, . . . , edq (Codenotti,
Santos & Schymura [5]), and these problems were solved by the authors in dimensions
up to 3. Surprisingly, this was not done on the side of calculating the covering minima,
which is seemingly the simpler side of this equivalence. The conjectured non-hollow
lattice polytope maximizers of covering radius are the simplices Td and direct sums of
translates of these. The behaviour of the lattice width and covering radius with respect
to direct sums is known (see eg. Codenotti & Santos [6] and Codenotti, Santos & Schy-
mura [5]), but is not known for the general covering minima. It is easy to see that
values of covering minima of Td are at least the conjectured values, therefore with this
in mind, we are interested in obtaining upper bounds on covering minima. In general,
lower bounds of covering minima have been studied: already by Kannan & Lovász [14]
with respect to the lattice point enumerator, as well as by Codenotti, Santos & Schymura
[5] and Merino & Schymura [9] with respect to the volume of the body, in the context
of the Covering Product Conjecture motivated by the conjecture of Makai Jr. [20] and

1



the fundamental theorems of Minkowski [22]. Known upper bounds are due to Kan-
nan & Lovász, who gave upper bounds on covering minima that involve Minkowski’s
successive minima, which Henk, Schymura & Xue [11] strenghtened by replacing the
successive minima with packing minima.

In this thesis, we aim find upper bounds for the covering minima of convex bodies, as
well as explain how covering minima interact with direct sums.

The thesis is divided into seven sections. In Section 1, we give some general prelimi-
naries on Convex and Lattice Geometry, as well as a detailed introduction to the lattice
width and covering radius of a convex body. In Section 2, we will introduce covering
minima and present some of their properties and connections to the lattice width and
covering radius, and we will present all known values of covering minima of specific
convex bodies. In Section 3, we show the maximizers of the covering radius in the fam-
ily of lattice polytope, and present known results and conjectures for maximizers in the
family of non-hollow lattice polytopes. The known upper bounds on general covering
minima will be presented in Section 4.

In Section 5, we give an upper bound on covering minima of convex bodies, which
depends on the lower dimensional covering minima of projections and intersections of
the convex body with respect to certain linear subspaces. Furthermore, we will give a
formula for covering minima of the direct sum of two convex bodies, which connects the
two results from [6] and [5] on lattice width and covering radius. Utilizing this general
bound, we give an upper bound for the covering minima of simplices Td. In Section 6,
we prove another upper bound on covering minima of convex bodies, which involves
only the covering radii of intersections of the body with coordinate subspaces. We then
use this bound to give a second upper bound on covering minima of Td. Furthermore,
we show that this upper bound is going to be sharp for all covering minima of a special
family of convex bodies, which includes all of the convex bodies for which values of
all covering minima are known. In Section 7, we compare the three upper bounds on
covering minima of convex bodies – the ones from Sections 4, 5 and 6. Throughout
this thesis, the running examples are exactly the lattice polytopes for which values of
covering minima are known, and we compare the given bounds on these, as well as our
simplices of interest Td. For all examples, at least one of our bounds is better than the
known ones. In the case of simplices Td, the bound from Section 5 is always slightly
better than the known bounds, and in general performs better for small values of i
compared to d, whereas the bound from Section 6 is slightly worse for small values of
i, but significantly better for big values of i compared to d. For example, for i � d � 1,
the conjectured value of the covering minimum is d�1

2
, the known bounds are valued

around d, and the bound from Section 6 is valued below d
2
.
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1 Mathematical preliminaries

For a ring R, we denote by GLdpRq the general linear group of order d, ie all invertible
d� d matrices over R.
For a linear subspace L ¤ Rd, by πL we denote the orthogonal projection of the space
Rd to the subspace L, and by LK we denote its orthogonal complement.
By AipR

dq we denote the family of all i dimensional affine subspaces of Rd.
By 1d and 0d we denote the all ones and all zeroes vectors in Rd, and with e1, . . . , ed P R

d

we denote the standard basis vetors.
We will assume knowledge of basic notions on polytopes, a good reference for this is
[25]. We denote the standard simplex of dimension d to be Sd :� convp0d, e1, . . . , edq,
the d-hypercube Cd :� r�1, 1sd and the d-crosspolytope C�

d :� convt�ei | i P rdsu. With
Td we denote the simplex convp�1d, e1, . . . , edq. These simplices will be crucial in this
thesis, and will be much more discussed in Subsection 3.1.

1.1 Convex Bodies

Definition 1.1. A subset K � Rd is a convex body if it is convex, compact and full
dimensional, ie dimpaffpKqq � d. We denote the family of all convex bodies in Rd by Kd.

Definition 1.2. Let K P Kd be a convex body. Its polar body is

K� :�
 
f P pRdq� | fx ¤ 1, for all x P K

(
.

Definition 1.3. We say that a convex body S P Kd is o-symmetric if its symmetric around
the origin, ie S � �S.

Definition 1.4. Let Rd � V `W be a decomposition of Rd into subspaces of dimensions
dimpV q � l, dimpW q � d� l, K � V and L � W convex bodies, full dimensional in their
respective subspaces, that contain the origin. We define the direct sum of these convex
bodies as

K ` L :� tλx� p1� λqy | x P K, y P L , λ P r0, 1su .

Remark 1.5. Notice that we don’t reqire 0d to be in the relative interior of K and L,
which differs from the standard definition of the direct sum of polytopes which agrees
with the face lattice. Since when we talk about polytopes, we don’t comment on combi-
natorial types, this definition is more suitable because our results work with this more
general construction.

1.2 Lattices

Definition 1.6. Let f1, . . . , fd P Rd be linearly independent. The set Λ � span
Z
pf1, . . . , fdq

is called a (d-dimensional) lattice. We denote the family of all lattices in Rd with Ld. We
refer to the elements of Λ as lattice points.
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From this definition, we can see lattices as full dimensional linear images of Zd, ie
Ld � tAZd | A P GLdpRqu. An equivalent definition of a lattice is as a discrete additive
subgroup of full dimension of Rd. This equivalence is not a trivial observation, and for
a general background on lattices as well as convex bodies, we refer to [10].

Convention 1.7. When the lattice is omitted in any notation further, it is assumed to be
Zd for the appropriate dimension d.

Definition 1.8. Let Λ � Rd be a lattice. We say that a P Λ is primitive if there does not
exist b P Λ and n P N¡1 such that a � nb.

Definition 1.9. Let A P GLdpRq be an invertible matrix, and Λ � AZd a lattice. The
determinant of the lattice Λ is detΛ :� | detA|.

Definition 1.10. Let Λ � Rd be a lattice. Then, every set of vectors f1, . . . , fd P Rd such
that Λ � span

Z
pf1, . . . , fdq is called the basis of the lattice Λ.

Definition 1.11. Let v0, . . . , vd P Rd be affinely independent. The standard half-open
parallelepiped spanned by these points is the set

Πpv0 . . . , vdq :�

#
v0 �

ḑ

i�1

λivi | 0 ¤ λi   1 for all i P rds

+
.

Additionally, if v0 � 0d and v1, . . . , vd is a basis of Λ, we call this standard half-open
parallelepiped a fundamental domain of the lattice Λ.

Proposition 1.12. Let Λ � Rd be a lattice and v0, . . . , vd P Λ affinely independent. Then

Πpv0, . . . , vdq � Λ � Rd.

Additionally, if Πpv0, . . . , vdq is a fundamental domain, every point x P Rd can be uniquely
represented as x � p� a, where p P Πpv0, . . . , vdq and a P Λ.

Definition 1.13. Let Λ � Rd be a lattice. A linear map A : Rd ! Rd is a unimodular
transformation if its restriction to Λ is a bijection to Λ.

Definition 1.14. Let Λ � Rd be a lattice. We say P � Rd is a lattice polytope if it is a
polytope whose vertices are lattice points. Additionally, P is a rational polytope if there
exists n P N such that nP is a lattice polytope, ie P has vertices in Qd.

Definition 1.15. Let Λ � Rd be a lattice. We say that S � Rd with vertices v0, . . . , vd P Rd

is an unimodular simplex if v1 � v0, . . . , vd � v0 is a basis for Λ.
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One could prove that A being a unimodular transform is equivalent to it sending a basis
of the lattice Λ to a basis of the lattice Λ. More specifically, if we fix a basis of Λ, which
is by definition also a basis of Rd, and view this map as a matrix in GLdpRq, we can see
that this is exactly the notion of a unimodular matrix ie matrix in GLdpZq. Similarly,
every unimodular simplex with respect to the lattuce Zd is going to be A � Sd, where
A P GLdpZq.

Proposition 1.16. Let Λ � Rd and S � Rd a lattice simplex with vertices v0, . . . , vd P Λ.
Then, S is a unimodular simplex if and only if Πpv0, . . . , vdq X Λ � tv0u.

Definition 1.17. Let Λ P Ld be a lattice and L ¤ Rd a linear subspace. We say that L
is a rational subspace of Rd with respect to Λ if it has a basis consisting of vectors in the
lattice Λ.

Proposition 1.18. Let Λ � Rd be a lattice and L ¤ Rd a linear subspace. Then, L is a
rational subspace iff ΛX L and πLpΛq are lattices.

Definition 1.19. Let Λ P Ld be a lattice. Its dual lattice is

Λ� :�
 
f P pRdq� | fx P Z, for all x P Λ

(
.

Specifically, pZdq� � Zd.

Definition 1.20. Let Rd � V `W be a decomposition of Rd into subspaces of dimensions
dimpV q � l, dimpW q � d � l and Λ � V , Γ � W lattices. We define the direct sum of
these lattices as the lattice:

Λ` Γ :� ta� b | a P Λ, b P Γu .

1.3 Successive Minima

Definition 1.21. For an o-symmetric convex body S P Kd, a lattice Λ P Ld and i P rds,
we define Minkowski’s successive minima as

λipS,Λq :� min tλ ¥ 0 | dimpspan
R
tλS X Λuq ¥ i u .

Remark 1.22. Notice that from the definition of successive minima, for every o-symmetric
K P Kd and Λ P Ld, λ1pK,Λq ¤ � � � ¤ λdpK,Λq. Additionally, notice that if L P Kd is
o-symmetric and L � K, for every i P rds, λipL,Λq ¥ λipK,Λq.
If λ ¡ 0, then for all i P rds, λipλK,Λq � 1

λ
λipK,Λq.

Example 1.23. Notice that the hypercube Cd contains d linearly independent lattice
vectors, for example e1, . . . , ed, and therefore λdpCdq ¤ 1. We can also notice that all
lattice points in Cd have coordinates 0,1 or -1, and the only one that is in the interior
is 0d. Therefore, for any 0   λ   1, the only lattice point in λCd is 0d, and therefore
λ1pCdq ¥ 1. From these two, and monotonicity of successive minima, we get λ1pCdq �
� � � � λdpCdq � 1.
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Example 1.24. Similarly to previous example, the crosspolytope C�
d contains e1, . . . , ed,

ie λdpC
�
d q ¤ 1. Since C�

d � Cd, we can conclude λipC
�
d q ¥ 1 for all i P rds. From

monotonicity of successive minima, λ1pC
�
d q � � � � � λdpC

�
d q � 1.

Example 1.25. Notice that for any convex body K P Kd, K � K is an o-symmetric
convex body, and therefore its successive minima are well defined.
To see what the successive minima of Sd � Sd is, notice that e1, . . . , ed P Sd � Sd, hence
λdpSd�Sdq ¤ 1. Vertices of Sd�Sd are a subset of the set tv�w |v P V pSdq, w P V p�Sdqu,
all of them are 0-1 vectors. Therefore, Sd � Sd � Cd. In the same manner as before, we
conclude λ1pSd � Sdq � � � � � λdpSd � Sdq � 1.

Along with introducing the successive minima Minkowski ([22]) began the field of ge-
ometry of numbers, with the following result:

Theorem 1.26. (Minkowski’s First Fundamental Theorem) Let S P Kd be an o-symmetric
body and Λ P Ld a lattice. Then:

λ1pS,Λq ¤ 2

�
detpΛq

volpSq


 1
d

.

This is not the most natural formulation of this theorem, but it’s the one that suits our
purposes the best. The more intuitive way of understanding this theorem is that it says
that a o�symmetric body with volume at least 2d detpΛq has to contain a non-zero lattice
point.

We can see that Minkowski’s First Fundamental Theorem can also be written as

λ1pS,Λq
n volpSq ¤ 2d detpΛq.

The natural strenghtening of this theorem was also given by Minkowski.

Theorem 1.27. (Minkowski’s Second Fundamental Theorem) Let S P Kd be an o-symmetric
body and Λ P Ld a lattice. Then:

λ1pS,Λq � � � � � λdpS,Λq volpSq ¤ 2d detpΛq.

1.4 Lattice Width

Definition 1.28. Let K � Rd be a convex body and Λ � Rd a lattice, and f P pRdq� a
linear functional. The width of K with respect to the linear functional f is

ωpK, fq :� max
x,yPK

|fx� fy|.

The lattice width of K with respect to the lattice Λ is

ωΛpKq :� min
fPΛ�zt0u

ωpK, fq.
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This notion is motivated by the Eucledian width of a convex body, but has an essentially
different behaviour. The Eucledian width is the minimum width when considering only
the normalized functionals, specifically all the functionals corresponding to points of the
sphere Sd�1. In the lattice width case, the functionals we are considering correspond
to real vectors of different lengths, but with integer coordinates, so the lattice width
encapsulates more number theoretical information then the purely metric information
that the Eucledian width encapsulates.

Remark 1.29. Notice that for any full dimensional lattice polytope P , its lattice width
has to be a positive integer. This follows from the fact that every functional f P Λ�zt0u
takes integer values on all vertices of P , and it has to be maximized and minimized
in at least one vertex. It cannot be zero, because that would imply that P lies in the
hyperplane defined by the width achieving direction.
Moreover, in the class of lattice polytopes, we can view the lattice width as the maximal
number of lattice hyperplanes in any fixed direction intersecting it, minus 1.

Remark 1.30. Notice that we can restrict the search for width achieving directions to
primitive non-zero lattice functionals, since if a � nb for a, b P Λ and n P N¡1, for every
x P Rd, ax � npbxq, so ωpK, aq � nωpK, bq. Specifically, ωpK, bq   ωpK, aq and a cannot
be a width achieving direction.

Example 1.31. The lattice width of the standard unimodular simplex Sd with respect to
the lattice Zd is 1. Since Sd is a lattice polytope, ωpSdq is a positive integer, specifically
ωpSdq ¥ 1. Observe the non zero lattice functional f that just gives back the first
coordinate of a point. Then, fe1 � f0d � 1, and therefore ωpSdq ¤ ωpSd, fq ¤ 1.

Remark 1.32. Notice that the lattice width is positively homogeneous, ie for every
λ ¡ 0, ωΛpλKq � λωΛpKq.

Definition 1.33. We say that a convex body K P Kd is hollow with respect to the lattice
Λ if it doesn’t have interior lattice points, ie intpKq X Λ � H.

Remark 1.34. In literature, the notion of a convex body being hollow is sometimes also
refered to it as being lattice-free.

An important result regarding the lattice width is the Flatness Theorem, which states
that a hollow convex body cannot be arbitrarily wide.

Theorem 1.35 (Flatness Theorem, [16]). There exists a constant Fltpdq depending just
on the dimension d such that for any hollow convex body K P Kd, the following holds:

ωpKq ¤ Fltpdq.
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Khinchine gave an upper bound for Fltpdq in [16] of order of magnitude n!. The first
polynomial bound on this value, Opn2q, was given by Kannan and Lovász in [14], using
the notion of covering minima, which are the focus of this thesis. This is still far off
from the expected value Opdq, which is the best one could hope to get since dSd is a hol-
low d-polytope of lattice width d with respect to Zd. Recently, Reis and Rothvoss ([23])
gave the best known upper bound on Fltpdq being Opd log3 dq, also using certain notions
from the Kannan and Lovász paper. Moreover, the only known exact values for Fltpdq
are for d � 1, 2, where the first case just states that no segment of length bigger than 1
is hollow, and the second is a result by Hurkens ([12]), where he shows Fltp2q � 1� 2?

3
.

The integer linear programming problem is the question of deciding if a given system of
linear inequalities with integer coefficients has an integer solution. There is no known
algorithm in polynomial time with respect to the lenght of the input, and the problem
phrased like that is proven to be NP-complete.

The existance of the Flatness constant was used by Lenstra in [18] to find a polynomial
algorithm for integer linear programming in fixed dimension. Moreover, the algorithm
would either efficiently find a solution, or find a width direction and reduce the problem
to a bounded number of lower dimensional problems.

The following proposition is folklore and shows a connection between the lattice width
and successive minima.

Proposition 1.36. Let K P Kd be a convex body and Λ P Ld a lattice. Then,

ωpK,Λq � λ1ppK �Kq�,Λ�q.

Proof. From the definition of successive minima 1.21, we can notice that the first suc-
cessive minimum can be seen as the smallest scaling of the convex body that contains a
non-zero lattice point. Specifically, in this example:

λ1ppK �Kq�,Λ�q :� min tλ ¡ 0 | λpK �Kq� X Λ� � t0duu .

Denote by λ�1 :� λ1ppK �Kq�,Λ�q, and let f P pλ�1pK �Kq�XΛ�qzt0du. By definition of
the polar body for all p P K �K, fp ¤ λ�1 , which is equivalent to fx� fy ¤ λ�1 holding
for all x, y P K. Since this holds for all x, y P K, it is equivalent to |fx�fy| ¤ λ�1 holding
for all x, y P K.
This would now imply that

ωΛpK, fq :� max
x,yPK

|fx� fy| ¤ λ�1 ,

and from minimality of λ�1 we can conclude ωΛpK, fq � λ�1 . Moreover, from minimality
of λ�1 we can also notice that

λ�1 � ωΛpK, fq � min
gPΛ�zt0u

ωΛpK, gq �: ωΛpKq.
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Remark 1.37. From the previous proof we can also notice that the directions in which
the lattice width of a convex body K is achieved are exactly the non-zero lattice points
in λ1ppK �Kq�,ΛqpK �Kq�.

Example 1.38. We can now show that ωpCdq � 2. From Proposition 1.36, we know
ωpCdq � λ1ppCd � Cdq

�q � λ1pp2Cdq
�q � λ1p

1
2
C�

d q � 2λ1pC
�
d q � 2, by Example 1.24.

Example 1.39. Similar to previous example, ωpC�
d q � 2λ1pCdq � 2, by Example 1.23.

In practice, this is the easiest way to algorithmically compute the width of a given
convex body. The issue is that to make it efficient, one would have to find the shortest
vectors in a lattice, which is NP-hard. A more efficient algorithm for computing the
lattice width is given by Charrier, Feschet and Buzer in [3].

1.5 Covering Radius

Definition 1.40. Let K P Kd be a convex body and Λ P Ld a lattice. The covering radius
of K with respect to the lattice Λ is

µpK,Λq :� min
 
µ ¥ 0 | µK � Λ � Rd

(
.

Example 1.41. The covering radius of the standard cube Cd � r�1, 1sd with respect to
the lattice Zd is 1

2
. For every 0   ε   1

2
, for example the point 1

2
1d will not be contained

in p1
2
� εqCd � Zd, therefore µpCdq ¥

1
2
. On the other hand, for x P R, if we denote

by rxs the closest integer to x, where ra � 1
2
s :� a for a P Z, we can see that for any

p � pp1, . . . , pdq P R
d, we can decompose it as pp1 � rp1s, . . . , pd � rpdsq � prp1s, . . . , rpdsq P

1
2
Cd � Zd, and therefore µpCdq ¤

1
2
.

Example 1.42. The covering radius of the d-crosspolytope with respect to Zd is d
2
. Notice

that Cd � dC�
d , since for any vertex of the hypercube, v P t�1, 1ud, v �

d°
i�1

1
d
dviei,

and dviei are vertices of C�
d . Therefore, 1

2
Cd � d

2
C�

d , and Example 1.41 tells us that
1
2
Cd � Zd � Rd, so µpC�

d q ¤
d
2
.

Now, to prove that µpC�
d q ¥

d
2
, we will show that the point 1

2
1d cannot be in pd

2
�εqC�

d�Z
d

for any d
2
¡ ε ¡ 0. Assume the countrary, and let a P Zd be such that 1

2
1d P a�pd

2
� εqC�

d

and a is such that it has the minimal possible number of strictly positive entries. For i P

rds, let αi, βi ¥ 0,
d°

i�1

αi�
d°

i�1

βi � 1 such that 1
2
1d � a�

d°
i�1

αip
d
2
�εqei�

d°
i�1

βip
d
2
�εqei. Then,

if by ai we denote the i-th coordinate of the point a for all i P rds, 1
2
�ai � pd

2
�εqpαi�βiq.

Summing up all of these inequalities, we get d
2
�

d°
i�1

ai � pd
2
� εqp

d°
i�1

αi �
d°

i�1

βiq. Since
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these coefficients are non-negative,
d°

i�1

αi �
d°

i�1

βi ¤
d°

i�1

αi �
d°

i�1

βi � 1, so the right hand

side of this equality has to be strictly less than d
2
, since ε ¡ 0. That means there is at least

one strictly positive ai and without loss of generality, assume a1 ¡ 0. Then, by swapping
the coefficients α1 and β1, none of the other equations change, and the first one becomes
pd
2
�εqpβi�αiq � �p1

2
�a1q �

1
2
�p�a1�1q. This means 1

2
1d P p�a1�1, a2, . . . , adq�

d
2
C�

d ,
and since a1 was strictly positive, �a1 � 1 is not, which contradicts the minimality
condition for a.

A more geometric interpretation of the covering radius of a convex body is to be seen
in the following proposition, which is folklore and we will prove it for completness.

Proposition 1.43. Let K P Kd be a convex body and Λ P Kd a lattice. Then its covering
radius is the maximal scalar µ ¥ 0 such that µK admits a hollow translate.

Proof. Let µ :� µpK,Λq and µ1 :� max tλ ¥ 0 | λK admits a hollow translateu. For con-
venience, suppose 0d P K, so that for every λ1 ¤ λ we can claim λ1K � λK, since K is
convex. We can make this assumption since both of the values µ and µ1 are translatory
invariant.

First, let’s prove µ ¥ µ1. Let p P Rd be such that p� µ1K is hollow, ie

pp� µ1 intpKqq X Λ � H.

Then, we claim that �p R µ1 intpKq �Λ. Suppose the opposite, �p � µ1q� a, wherer q P
intpKq and a P Λ. Then, �a � p�µ1q, and here �a P Λ and p�µ1q P p�µ1 intpKq, which
is impossible since p�µ1K is hollow. Now since p R µ1 intpKq�Λ, so µ1 intpKq�Λ � Rd,
we can conclude that for every ε ¡ 0, pµ1�εqK�Λ � µ1K�Λ � Rd, therefore by letting
ε approach zero, we get µ1 ¤ µ.

Now, let’s prove that µK admits a hollow translate, which would imply µ ¤ µ1. Similar
to the first inequality, we want to take a point p P Rdz pµ intpKq � Λq and notice that
�p � µK is hollow, following from the same observations. Therefore, we just need to
show that the set Rdz pµ intpKq � Λq is non-empty.
Since µ is minimal such that µK � Λ � Rd, for every ε ¡ 0, pµ � εqK � Λ � Rd. Let
F � Rd be a fundamental domain of the lattice Λ. For any point x P Rdztpµ� εqK � Λu,
by Proposition 1.12, there exist unique representation of x as a sum of a point in xε P F
and a point a P Λ. Since xε � a P Rdztpµ � εqK � Λu, we can conclude xε P F ztpµ �
εqK �Λu. The closure of a fundamental domain is compact, so txεuε¡0 has a limit point
x P clpF q. Then we can say that x R pµ � εqK � Λ for every ε ¡ 0, and therefore is not
in µ intpKq � Λ.
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Example 1.44. The covering radius of the unimodular simplex Sd � convp0d, e1, . . . , edq
with respect to the lattice Zd is d.
From Proposition 1.43, to prove µpSdq ¥ d it suffices to show that dSd is hollow. Since

d intpSdq �

"
x P Rd | xi ¡ 0,

d°
i�1

xy   d

*
, there is no integers x1, . . . , xd satisfiying these

conditions, ie dSd is hollow. Since r0, 1sd � dSd, and r0, 1sd is a fundamental domain,
dSd � Zd � r0, 1sd � Zd � Rd, ie µpSdq ¤ d.

The following definition is due to Codenotti, Santos and Schymura ([5]), and encapsu-
lates the ideas seen in the previous proof.

Definition 1.45. Let K P Kd be a convex body, Λ P Ld a lattice and µ :� µpK,Λq. A
point p P Rd is last covered by K with respect to Λ if

p R µ intpKq � Λ.

Notice that the second step of this proof was essentially just proving that last covered
points always exist.

Remark 1.46. Notice that if for some µ ¥ 0, since last covered points always exist, ie
µpK,Λq intpKq � Λ � Rd, the following two hold:

1. µ intpKq � Λ � Rd ñ µ ¤ µpK,Λq,

2. µ intpKq � Λ � Rd ñ µ ¡ µpK,Λq.

(a) T2 (b) C2
(c) convp�1

2
e1,

3
2
e1,�e2, e2q

Figure 1.1: Last Covered Points

Figure 1.1 shows three convex bodies, scaled by their covering radii which are 1, 1
2

and
1 respectively, shaded in dark gray, as well as the lattice Z2. Shaded in light gray are
some of the lattice translates of the convex bodies, and in red are the last covered points
that coincide with the original copy of the convex body. From example (b) we can notice
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that the set of last covered points coinciding with µpKqK does not have to be finite. In
these examples we can notice that last covered points will always coincide with at least
two lattice translates of µpKqBK, but from example (c) we can also notice that not all
intersections of at least two lattice translates of µpKqBK have to be last covered points,
since they can be in the interior of another lattice translate of µpKqK.

Algorithms for calculating the covering radius of a rational polytope have been explored.
Kannan ([13]) reduces the Frobenius coin problem, which is known to be NP-hard
with respect to the lenght of the input, to calculating the covering radius of specific
rational simplices, and gives the first algorithm for calculating covering radii of rational
polytopes in the same paper. This proof is quite technical, and after using the obtained
structural results, relies on solving multiple mixed integer linear programs.

The notion of last covered points brings a more geometric viewpoint of the study of
the covering radius. By approaching this problem from the last covered points point of
view, Cslovjcsek, Malikosis, Naszódi and Schymura [7] gave a more efficient and more
easily implementable algorithm for computing the covering radius of a given rational
polytope. The algorithm is based on the following lemma, which reduces the problem
to a binary search where in each step, one solves a system of linear inequations.

Lemma 1.47. [7, Lem. 3.1] Let P �
 
x P Rd | aTi x ¤ bi, i P rms

(
be a facet description of

a polytope P � Rd with the origin in the interior, ie bi ¡ 0 for all i P rms. Then, there exist
facet normals ai1 , . . . , aid�1

of P and not necessairily distinct lattice points z1, . . . , zd�1 P Z
d

such that the system of linear equations

µ �
aTi1px� z1q

bi1
� � � � �

aTid�1
px� zd�1q

bid�1

in the variables µ and x has a unique solution pµ̄, p̄q, where µ̄ � µpP q and p̄ is a last
covered point by P with respect to Zd.

To prove this lemma, one takes any last covered point that is contained in the most of
the sets from the family tF � Zd | F is a facet of P u. Then, consider the set of facet
normals of the facets containg that last covered point in one of their lattice translates.
They show that the affine hull of this set is Rd, and therefore that set has to contain
at least d � 1 points. The system of linear equations essentially describes getting the
observed last covered point as the intersection of the scaled facet translates it is in.

Geometrically, this lemma states that for a polytope P , there exists a last covered point p
that is exactly the intersection of some lattice translates of d�1 distinct facets of µpP qP .

On the other hand, last covered points are useful for investigating inclusion maximal
convex bodies with a fixed covering radius, which were first studied by Codenotti, San-
tos and Schymura.
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Definition 1.48. Let K P Kd be a convex body and Λ P Ld a lattice. Then, K is called
tight for Λ if for every convex body K 1 � K we have

µpK 1,Λq   µpK,Λq.

The following lemma gives a characterization of all tight convex bodies.

Lemma 1.49. [5, Lem. 2.5] Let K P Kd be a convex body, Λ P Ld a lattice and µ :�
µpK,Λq. Then, the following properties are equivalent:

i) K is tight for Λ.

ii) K is a polytope and for every facet F of K and for every last covered point p,

p P relintpµ � F q � Λ.

iii) K is a polytope and every facet of every hollow translate of µK is non-hollow.

iv) Every hollow translate of µ �K is an inclusion maximal hollow convex body.

The notion of tightness was furthermore used for finding maximizers for covering radis
in the family of non-hollow lattice polytopes in dimensions 2 and 3, which there will be
more word on in Subsection 3.1. They did this through the following lemmas and the
fact that the covering radius is monotonely decreasing with respect to set inclusion.

Lemma 1.50. [5, Lem 2.7] Every simplex is tight for every lattice.

Lemma 1.51. [5, Lem. 2.8] Let K1 and K2 be convex bodies containing the origin and Λ1

and Λ2 be lattices. Then, K1 and K2 are tight for Λ1 and Λ2 respectively iff K1`K2 is tight
for Λ1 ` Λ2.

2 Covering Minima

The functionals on the family of convex bodies that we are the most interested in are
covering minima, introduced by Kannan and Lovász in [14]. In this section, we will see
the definition and some basic properties of covering minima, as well as their connections
to the previously mentioned functionals. Furthermore, we will see some examples of
convex bodies for which we do know the values of all covering minima.
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2.1 Definition and Properties

Definition 2.1. Let K P Kd be a convex body, Λ P Ld a lattice and i P rds. The i-th
covering minimum of K with respect to the lattice Λ is

µipK,Λq :� inf
 
µ ¥ 0 | pµK � Λq X L � H for all L P Ad�ipR

dq
(

Remark 2.2. Notice that if the convex body is of dimension d, the notions of d-th cov-
ering minimum and the covering radius are by definition the same, ie for every K P Kd

and Λ P Ld,
µdpK,Λq � µpK,Λq.

Remark 2.3. Some properties of covering minima are as follows:

• (Translation invariance) Since this definition requires intersections with all affine
subspaces of fixed dimension, the covering minima are invariant with respect to
translation of the convex body.

• (GLdpRq invariance) For A P GLdpRq, A�1 is a bijection on Ad�i, therefore µAK �
AΛ intersects all d�i affine subspaces iff µK�Λ intersects them all, ie µipAK,AΛq �
µipK,Λq.

• (Monotonicity) Notice that if some subset of Rd intersects all i-dimensional affine
subspaces, it also intersects all pi�1q-dimensional affine subspaces, therefore µ1 ¤
µ2 ¤ � � � ¤ µd.

• (Monotonicity with respect to inclusion of convex bodies) Let K,K 1 P Kd and K 1 �
K. Then for every µ ¥ 0, µK 1 � Λ � µK � Λ, so µpK,Λq ¤ µpK 1,Λq.

• (Monotonicity with respect to inclusion of lattices) Let Λ,Λ1 P Ld and Λ1 � Λ. Then
for every µ ¥ 0, µK � Λ1 � µK � Λ, so µpK,Λq ¤ µpK,Λ1q.

• (Scaling) For a scalar λ ¡ 0, µipλK,Λq � 1
λ
µipK,Λq since for every µ ¡ 0, µK �

pµ 1
λ
qpλKq.

Notice also that since µ � µd, all of the invariance and monotonicity with respect to
inclusion properties also hold for the covering radius.

Remark 2.4. In the definition of the covering minima, it is valid to talk about the
minimum of these values instead of their infimum, since K is compact.
Let L P Ad�ipR

dq be arbitrary. By the definition of the i-th covering minimum, for every
ε ¡ 0, there exist xε P K and aε P Λ such that pµi � εqxε � aε P L. Since Λ is countable,
there is an element a P Λ such that there exists a sequence tεnunPN such that aεn � a for
all n P N, ie the intersection with L happens in the same lattice translate of K. Since
K is compact, txεnunPN has a sequence converging to some x P K. Since L is closed,
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lim
n!8

pµi � εnqxεn � a � µix � a P L. Because L was arbitrary, µiK � Λ intersects all

elements of Ad�ipR
dq. Notice that since µ � µd, this also justifies the use of minimum in

the definition of the covering radius of a convex body.

Remark 2.5. Since Q is dense in R and K�Λ is a closed set, in the definition of the i-th
covering minimum, it is enough to require intersections with all translates of all rational
subspaces of dimension d� i.

Lemma 2.6. [14, Lemma 2.3] For a convex body K P Kd and lattice Λ P Ld, the following
equality holds:

µ1pK,Λq �
1

ωΛpKq
.

Proof. Let f P Λ� be a non-zero primitive lattice functional, α :� max
xPK

fx and β :�

min
yPK

fy. We claim that for any µ ¡ 0, µK � Λ intersects all hyperplanes of the form

Hγ :� tx P Rd|fx � γu if and only if µpα � βq ¥ 1.

Let a P Λ be arbitrary. Then, fa P Z by the definition of a dual lattice, and since f
is primitive, fa takes all integer values when a passes through Λ. Therefore, for every
p P a� µK, fp P rfa� µβ, fa� µαs. µK �Λ intersects all hyperplanes Hγ if and only if¤

aPΛ
rfa� µβ, fa� µαs �

¤
nPZ

rn� µβ, n� µαs � R.

This will happen if and only if µpα � βq ¥ 1. Since ωpK, fq � α � β, this is equivalent
to µωpK, fq ¥ 1. Therefore, µK � Λ intersects all translates of all rational hyperplanes
if and only if for every non-zero primitive f P Λ�, µωpK,Λq ¥ 1. By the definition of
the lattice width and Remark 1.30, this is equivalent to µωΛpKq ¥ 1. Since by Remark
2.1 it is enough to check for all hyperplanes with rational directions, the first covering
minimum is the minimum of all such µ, we can conclude that µ1pK,ΛqωΛpKq � 1, ie
µ1pK,Λq � 1

ωΛpKq .

Remark 2.7. Observe that the covering minima are a sequence of functionals connect-
ing the notions of the covering radius and the lattice width, since µd � µ, and Lemma
2.6 connects the first covering minimum with the lattice width by saying they are recip-
rocal. Thus, the sequence of covering minima interpolates between 1

ω
and µ.

Both the lattice width and covering radius have been heavily studied, and specific values
are known for many polytopes. Moreover, algorithms for computing both the covering
radius and lattice width of a rational polytope in an arbitrary fixed dimension exist.
However, calculating any of the covering minima for 2 ¤ i ¤ d � 1 is a much harder
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task, and they are known for a small family of polytopes, and no algorithms for compu-
tation are known.

Motivated by the notion of last covered points for the covering radius of a convex body,
we would like to define a similar notion for other covering minima.

Definition 2.8. Let K P Kd be a convex body, Λ P Ld a lattice and i P rds. We say that
L P Ad�ipR

dq a last covered subspace if

pµipK,Λq intpKq � Λq X L � H.

(a) T2 (b) C2 (c) convp�1
2
e1,

3
2
e1,�e2, e2q

Figure 2.1: Last Covered Subspaces of dimension 1

Figure 2.1 shows the same three convex bodies as before, scaled by their first covering
minima which are all 1

2
, shaded in dark gray, as well as some of their lattice translates

in light gray. The red lines are the last covered subspaces of dimension 1 that coincide
with the scaling of the original copy of the convex body.

The notion of last covered subspaces was implicitly used by Kannan and Lovász, for
example in the following lemma.

Lemma 2.9. [14, Lem. 2.2] Let K P Kd be a convex body, Λ P Ld a lattice and i P rds.
Then, there exists L P Ad�ipR

dq such that:

1. LX pµipK,Λq intpKq � Λq � H and

2. the linear subspace parallel to L is rational.

Remark 2.10. In other words, this lemma says that last covered subspaces always exist.
In a similar vein to Remark 1.46, for any µ ¥ 0, the following two hold:

1.
�
DL P Ad�ipR

dq pµ intpKq � Λq X L � H
�
ñ µ ¤ µipK,Λq,
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2.
�
@L P Ad�ipR

dq pµ intpKq � Λq X L � H
�
ñ µ ¡ µipK,Λq.

Kannan and Lovász observe in [14, Remark 1] the following equivalent definition of
covering minima, which we prove for completeness.

Proposition 2.11. Let K P Kd be a convex body, Λ P Ld a lattice and i P rds. Then

µipK,Λq � max
 
µpπLpKq, πLpΛqq | L is a rational i-dim subspace of Rd

(
.

Proof. p¥:q Let µi :� µipK,Λq, L be a rational i-dimensional linear subspace of Rd and
t P L arbitrary. Then, t�LK P Ad�ipR

dq, therefore pµiK �Λq X pt�LKq � H. Projecting
to L, we get pµiπLpKq � πLpΛqq X ttu � H. Since t P L was arbitrary, this implies
µiπLpKq � πLpΛq � L, ie µi ¥ µpπLpKq, πLpΛqq.

p¤:q By Lemma 2.9, there exists a last covered subspace L1 P Ad�ipR
dq such that the

linear subspace parallel to L1 is rational. Let L1 � t � L, where L is a linear subspace
and t P LK. By projecting onto LK, which is a rational linear subspace of dimension i,
we get t R µi intpπLKpKqq�πLKpΛq, ie µi ¤ µpπLKpKq, πLKpΛqq. Therefore, since µi is less
or equal then one of the values on the RHS, it’s less or equal then their maximum.

Remark 2.12. Following this proof, we can also notice a connection between the last
covered subspaces and the rational linear subspaces for which the covering radius of
the projection will achieve the covering minimum. Sepecifically, if L1 P Ad�ipR

dq is a last
covered subspace, and L the linear subspace parallel to it, then LK is a direction such
that µipK,Λq � µpπLKpKq, πLKΛq, and additionally, L1 projects to a last covered point of
πLKpKq with respect to the lattice πLKpΛq.
This also works the other way around – for every projection direction achieving the
covering minimum, every subspace parallel to its orthogonal complement that contains
a last covered point of the projection will be a last covered subspace of the original
convex body.

We would like to point out that this viewpoint on covering minima provides us with
lower bounds when looking at a specific convex body, but doesn’t suffice for giving
global lower bounds that hold for all convex bodies, for example in the spirit of Minkowski’s
theorems, which are folklore for the covering radius, see for example [10]. Lower
bounds of covering minima have been heavily studied, already by Kannan and Lovász
([14]), where they give lower bounds on covering minima which include the lattice
point enumerator. Moreover, Merino and Schymura in [9] translate the conjecture of
Makai Jr. ([20]) to the language of the first covering minimum, which then resembles
Minkowski’s First Fundamental Theorem 1.26, and furthermore raise questions of what
is the exact bound if we replace the first covering minimum with an arbitrary one, as
well as if we study the product of all covering minima with the volume in the vain of
Minkowski’s Second Fundamental Theorem 1.27. For an overview of inequalities and
open questions of this form, we refer to [9], as well as [11] for some similar problems.

17



2.2 Known Values of all Covering Minima

Since Proposition 2.11 gives a way to see lower bounds for covering minima for a con-
crete convex body, we can show the first example of calculation of all covering minima
for a convex body.

Example 2.13. The covering radius of the standard hypercube is µipCdq �
1
2
. This can be

seen by noticing that for every 0   ε   1
2
, the pd� iq-dimensional affine subspace given

by 1d�tx � px1, . . . , xdq P R
d | x1 � � � � � xi � 0u does not intersect p1

2
�εqCd�Z

d, so by
the definition of covering minima, µipCdq ¥

1
2
. For the other inequality, notice that the

projection of Cd to the i-dimensional linear subspace spanned by the first i coordinate
axes is Ci, and since µpCiq �

1
2

(Example 1.41), by Proposition 2.11 we get µipCdq ¥
1
2
.

The covering minima of unimodular simplices were calculated even in [14], but we will
provide a proof in the following proposition that relies on elementary linear algebra for
obtaining the upper bound. Kannan and Lovász in [14] used a more involved tool for
obtaining the upper bound, involving the successive minima (Lemma 4.1). Merino and
Schymura in [9] also commented on how this fact can be seen using the fact that every
affine subspace of dimension d � i intersects some i-dimensional coordinate subspace,
which is the idea that we have encapsulated in Lemma 6.1.

Proposition 2.14. Let Sd � Rd be the standard d-simplex, ie Sd :� convp0d, e1, . . . , edq.
Then, for every i P rds,

µipSdq � i.

Proof. p¥:q If π : Rd ! Ri is the projection to linear subspace spanned by the first i
standard basis vectors, πpSdq � Si � t0d�iu, and πpZdq � Zi � t0d�iu. From Example
1.44, µpSiq � i, therefore by Proposition 2.11 µipSdq ¥ i.
p¤:q Let p P Rd be arbitrary and v1, . . . , vd�i P R

d linearly independent vectors. It would
suffice to show that p� span

R
pv1, . . . , vd�iq X piSd � Zdq � H. Since iSd � tx P Rd | xj ¥

0,
°d

j�1 xj ¤ iu, it would be enough to find λ1, . . . , λd�i P R such that the sum of (posi-

tive) fractional parts of the coordinates of p�
d�i°
j�1

λjvj is at most i.

Since the vectors v1, . . . , vd�i are linearly independant, there exists a set I P
� rds
d�i

�
of

coordinates such that the matrix rpvjqksjPrd�is,kPI is an invertible matrix. Choose the
coefficients λ such that they satisfy the pd � iq � pd � iq system of linear equations°d�i

j�1 λjpvjqk � �pk, for all k P I. Therefore, the coordinates corresponding to the

indices in the set I of the point p �
d�i°
j�1

λjvj are 0, therefore have fractional parts 0.

There are exactly i coordinates that are not in the set I, and therefore the sum of the

fractional parts of the point p�
d�i°
j�1

λjvj is at most i.
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There aren’t many convex bodies for which all covering minima are known.
Merino and Schymura in [9] introduce the following family of polytopes that inter-
polates between the cube and the crosspolytope, and calculate the values of all their
covering minima.

Definition 2.15. Let d P N, and i P rds. We define the following d-polytope:

Pd,i :� convp�ej1 � � � � � eji | 1 ¤ j1   � � �   ji ¤ dq � Cd X iC�
d .

Specifically, Pd,d � Cd and Pd,1 � C�
d .

Proposition 2.16. [9, Prop. 3.3] For every d P N and i P rds, we have:

µjpPd,iq �

"
1
2

, j ¤ i
j
2i

, j ¡ i.

In particular, µipCdq �
1
2

and µipC
�
d q �

i
2

for all i P rds.

The proof of this proposition relies on the fact that the projection of Pd,i onto an j-
dimensional coordinate subspace Lj is either Pj,i or a hypercube, depending on the
dimension j and parameter i. Then, they bound the covering minima of Pn,i from above
by the covering radii of these intersections, which for this family of convex bodies turns
out to be sharp.

3 Lattice Polytopes Maximizing the Covering Radius

An upper bound for the covering radius of lattice polytopes is well known, as well as
what the maximizers are, as seen in the following proposition.

Proposition 3.1. If P P Kd is a lattice polytope, then:

µpP q ¤ d.

Equality holds iff P is a unimodular simplex.

Proof. Let V � V pP q be any subset of d�1 affinely independent vertices of P . Then S :�
convpV q is a lattice simplex contained in P . It suffices to show µpSq ¤ d, since µpP q ¤
µpSq from Remark 2.3. Since S is a lattice simplex, there exists a linear transformation
A P Zd�d of full rank such that S � ASd. Using the properties from Remark 2.3 further,
and the fact that AZd � Zd, we get:

µpS,Zdq � µpASd,Z
dq ¤ µpASd, AZ

dq � µpSd,Z
dq � d.
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In Proposition 1.44, we have shown that equality holds for Sd, and therefore for all
unimodular simplices since the covering radius is invariant with respect to linear trans-
formations, and the image of Zd via a unimodular transformation is Zd. Now, we only
need to show that for any lattice polytope that isn’t a unimodular simplex, its covering
radius is strictly smaller than d.

Let S P Kd be a lattice simplex contained in the starting lattice polytope P . We can
assume it has vertices 0d, v1, . . . , vd, since the covering radius is translation invariant.

Let Π :�

"
d°

i�1

αivi | αi P p0, 1s, for all i P rds
*

be a half-open parallelepiped. We use the

opposite interval than the one in the standard half-open parallelepiped for convenience,
but all of the corresponding results from Subsection 1.2 still hold. Since Π � Zd � Rd

by Proposition 1.12, it is enough to show Π � d intpP q � Zd, since that would imply
Rd � Π� Zd � d intpP q � Zd, and by Remark 1.46 that would imply µpP q   d. Now we
calculate

d intpSq �

#
ḑ

i�1

αivi | αi ¡ 0,
ḑ

i�1

αi   d

+
� Πztv1 � � � � � vdu.

By Proposition 1.16, of S isn’t unimodular, there exists a lattice point in a P Πztv1 �
� � � � vdu. Then, for a lattice point b :� v1 � � � � � vd � a,

v1 � � � � � vd P pΠztv1 � � � � � vduq � b � d intpSq � b.

Therefore, Π � d intpSq � Zd � d intpP q � Zd, ie µpP q   d.

If S is unimodular, since P is not a unimodular simplex, there exists a vertex vd�1 of P
such that vd�1 R S. Moreover, we can suppose that vd�1 violates the inequality defining
the facet opposite of 0d, since in the beginning we made an arbitrary choice of which
vertex of S to translate to 0d.
Let P 1 :� convp0d, v1, . . . , vd�1q � P . Since v1 � � � � � vd is in the relative interior of
the facet opposite to the vertex 0d in the simplex dS, it will be in the interior of the
polytope dP 1by definition of vd�1. Therefore, Π � d intpP 1q � Zd � d intpP q � Zd, hence
µpP q   d.

3.1 Non-Hollow Lattice Polytopes

Notice that all the lattice polytopes that maximize the covering radius are unimodular
simplices, and therefore hollow. Codenotti, Santos and Schymura [5] raise the question
of what are the upper bound and maximizers for covering radius in the family of all
non-hollow lattice polytopes in dimension d.
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Since the maximizers in the hollow case are unimodular simplices, a natural candidate
for a maximizer in the family of non-hollow lattice polytopes is the terminal simplex,
which is the most symmetric lattice simplex with one interior lattice point.

Definition 3.2. For d P N, the terminal d-simplex is the simplex Td :� convp�1d, e1, . . . , edq.
We say that T � Rd is a terminal d-polytope if T is a lattice d-polytope and can be seen
as a direct sum of lattice translates of terminal simplices.

We can see the terminal d-simplex and the d-crosspolytope, which we get as a direct sum
of d terminal 1 simplices as the two extremums in the family of terminal d-polytopes,
so we can see this as a family of non-hollow lattice polytopes, interpolating between a
simplex and a crosspolytope.

Codenotti, Santos and Schymura propose the following conjecture, and prove it in di-
mensions 2 and 3.

Conjecture 3.3. [5, Conj. A] Let P � Rd be a non-hollow lattice polytope. Then

µpP q ¤
d

2
,

where equality holds iff P is a terminal d-polyope up to a unimodular transformation.

The covering radius was proved to be equal to the value conjectured here, by Merino
and Schymura.

Theorem 3.4. [9, Prop. 4.8.] For every d P N,

µpTdq �
d

2
.

The proof of this theorem is rather involved. It is based on the fact that the cov-
ering radius of the standard simplex Sd � convp0d, e1, . . . , edq with respect to a lat-
tice Λ can be seen as the diameter of the directed quotient lattice graph (Marklof and
Strömbergsson,[21], Lemmas 3 and 4). For more on quotient lattice graphs, we refer to
[21].

Additionally, Codenotti, Santos and Schymura ([5], Cor. 2.2) prove that the covering
radius is an additive functional with respect to direct sums of convex bodies and lat-
tices. Because terminal d-polytopes are direct sums of translates of terminal simplices,
we can conclude that the covering radius of every terminal d-polytope is d

2
, which veri-

fies correctness of the values of the covering radius in the the conjectured equality cases
in Conjecture 3.3.

Regarding the covering minima of terminal simplices, Merino and Schymura conjecture
the following:
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Conjecture 3.5. [9, Rem. 4.9] For every d P N and i P rds,

µipTdq �
i

2
.

Since projecting Td to a i-dimensional coordinate subspace gives Ti, Proposition 2.11
for terminal simplices combined with Theorem 3.4 gives us the following lower bound.

Claim 3.6. Let d P N and i ¤ d. Then:

µipTdq ¥
i

2
.

Proof. Let π be the projection to the space spanned by the first i coordinate vectors.
πpTnq � Ti�t0d�iu and πpZdq � Zi�0d�i. From Proposition 2.11 and Theorem 3.4, this
implies µipTnq ¥

i
2
.

This gives one of the inequalities needed to prove Conjecture 3.3. The other inequality
needed would be of the form of an upper bound of the covering minima of a convex
body. The definition of covering minima is technically a tool for obtaining upper bounds,
but checking if a subset of Rd intersects all affine subspaces of a fixed dimension is rather
difficult.

The upper bound for the covering radius of an arbitrary non-hollow lattice polytope and
the values of the covering minima of terminal simplices were connected by Codenotti,
Santos and Schymura in the following theorem.

Theorem 3.7. [5, Thm. 1.2] For every d P N, the following are equivalent:

i) µpP q ¤ i
2

for every i ¤ d and every non-hollow lattice i-polytope P .

ii) µipTnq �
i
2

for every n ¥ d and every i ¤ d.

The implication iq ñ iiq follows from Claim 3.6 and the fact that the i-th covering mini-
mum of Tn is the maximum of covering radii of rational i-projections of Tn, which are all
non-hollow lattice polytopes since Tn is a non-hollow lattice polytope. The implication
iiq ñ iq is shown by for a given non-hollow lattice i-polytope P , finding an n P N and
a rational projection π : Rn ! Ri such that πpTnq � P . Then, since P can be seen as a
rational projection of Tn, i

2
� µipTnq ¥ µpP, πpZnqq ¥ µpP q.

Notice that in Theorem 5.1 ii) the value of the i-th covering minimum is required to
be i

2
for all terminal simplices, not only for the ones in dimensions up to d, so simple

inductive arguments for proving that ii) holds do not suffice.

Conjecture 3.3 is proven to hold in dimensions 2 and 3 [5, Cor. 3.6, Thm. 3.13]. More

22



specifically, they have proven that every non-hollow lattice polygon has a covering ra-
dius at most one, and every non-hollow lattice 3-polytope has covering radius at most
3
2
. These proofs use the classification of inclusion minimal non-hollow lattice polytopes,

which is folklore in dimension 2, and is done in [15, Thm. 3.1] for dimension 3. This
approach requires both the classification of such objects, which is not known in higher
dimensions, and furthermore bounding their covering radii.

From the fact that Conjecture 3.3 is proved in dimensions 2 and 3, and Theorem 5.1,
we can conclude that for every n P N, µ1pTnq �

1
2
, µ2pTnq � 1 and µ3pTnq �

3
2
.

Trying to tackle this problem from the side of Conjecture 3.5 requires understanding
the behaviour of more dificult to grasp functionals (the covering minima) of very spe-
cific polytopes – the terminal simplices. Since the lower bound is already known, as in
Claim 3.6, one of the logical next steps would be to investigate possible upper bounds
on covering minima.

4 Known Upper Bounds for Covering Minima of Convex
Bodies

Kannan and Lovász give the following upper bound on covering minima, involving the
previous covering minimum and an appropriate successive minimum of the difference
body. We will present the proof of this bound, due to Kannan and Lovász, to emphasise
the fact that last covered subspaces can be used as a tool for translating results on
covering radii to results on covering minima.

Lemma 4.1. [14, Lem. 2.5] For a convex body K P Kd, lattice Λ P Ld and i P rds, the
following inequality holds:

µi�1pK,Λq ¤ µipK,Λq � λd�ipK �K,Λq.

Proof. Denote by µi :� µipK,Λq and by λi :� λipK �K,Λq for all i P rds.
First, let’s prove this claim for i � d � 1. Let v P λ1 � pK � Kq be a non-zero lat-
tice vector. Since all covering minima and successive minima of the difference body
are translatory invariant, we can translate K so that 0d, v P λ1K. Let p P Rd be ar-
bitrary. By the definition of the pd � 1q-st covering minimum, µd�1K � Λ has to in-
tersect the line p � span

R
pvq. Therefore, there exist x P K, a P Λ and t P R such that

p�tv � µd�1x�a. Then, p � µd�1x�pt�ttuqv�ttuv�a. Since v P λ1K, and 0d P K, from
t� ttu P r0, 1q we can conclude pt� ttuqv P λ1K. Moreover, since 0d P K and K is convex,
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µd�1x� pt� ttuqv P pµd � λ1qK. Since a, ttuv P Λ, this means that p P pµd�1 � λ1qK � Λ,
ie µd ¤ µd�1 � λ1.

For i P rd � 2s, we will make use of the notion of last covered subspaces. By Lemma
2.9, there exists a last covered subspace L P Ad�i�1pR

dq. Denote by K 1 :� πLKpKq,
Λ1 :� πLKpΛq, and by µ1, µ1j, λ

1
j the corresponding covering radius, minima and succes-

sive minima for j P ri � 1s. By Remark 2.12, µi�1 � µ1. From the first part of this
proof applied to the convex body K 1 and lattice Λ1, we can conclude µ1 ¤ µ1i � λ11.
Since the i-th covering minimum is the maximum of covering radii over all rational
projections of dimension i, and the set of all rational i-dimensional projections of Rd

with respect to Λ is a superset of all those of πLKpR
dq with respect to Λ1, we see that

µ1i ¤ µi. Let v1, . . . , vd�i P λd�ipK � Kq be linearly independent lattice vectors. Then,
since dimpKerpπLKqq � d � i � 1, there has to be at least one non-zero vector among
πLKpv1q, . . . , πLKpvd�iq P λd�ipK

1 � K 1q. As all of them are lattice vectors, this implies
λ11 ¤ λd�i. Therefore, µi�1 � µ1 ¤ µ1i � λ11 ¤ µi � λd�i.

In [11], Henk, Schymura and Xue notice that in this proof, we can replace the successive
minima with yet another functional, packing minima, and the same proof suffices. We
refer to [11] for a review on packing minima.

Example 4.2. This upper bound will be sufficient for calculating all the covering minima
of the d-crosspolytope. Namely, since the projection of C�

d to the first i coordinates is
C�

i , we know µipC
�
d q ¥ µpC�

i q �
i
2

(Example 1.42). From Example 1.24, we know
for all j P rds that λjpC

�
d q � 1, and therefore λjpC

�
d � C�

d q � λjp2C
�
d q �

1
2
. Since

µ1pC
�
d q �

1
ωpC�d q

� 1
2

by Example 1.39, successive application of Theorem 4.1 gives us

µipC
�
d q ¤ µ1pC

�
d q � pi� 1q1

2
� i

2
.

Since successive minima as well as difference bodies are also difficult to calculate, the
next bound given by Kannan and Lovász modifies the previous one to involve the first
covering minimum, ie the reciprocal of the lattice width, instead of the succesive minima
of difference bodies.

Lemma 4.3. [14, Lem. 2.6] For a convex body K P Kd, lattice Λ P Ld and every 1 ¤ i ¤
d� 1,

µi�1pK,Λq ¤ µipK,Λq � cpi� 1qµ1pK,Λq,

where c is an absolute constant.

The proof of this lemma for i � d�1 follows by plugging λ1pK�K,Λqλ1ppK�Kq�,Λ�q ¤
cd, and µ1pK,Λq � λ1ppK �Kq�,Λ�q into the previous lemma. This inequality is a con-
sequence of Minkowski’s First Fundamental theorem 1.26 and the fact that there exist
absolute constants c1, c2 such that for every d-dimensional o-symmetric convex body,
cd1
dd
¤ volpSq volpS�q ¤ cd2

dd
. The lower bound, which is the one we use, is due to Bourgain
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and Milman ([2]), and it was conjectured by Mahler ([19]) that c1 � 4, with equality
holding for the hypercube, but also for the crosspolytope and a whole family interpo-
lating between the two. The upper bound is due to Santaló ([24]), and equality holds
for a ball. The absolute constant c in the statement of this lemma is actually 4

c1
, which

means that c ¥ 1. For the cases i P rd�2s, it is again sufficient to reduce to the first case
by looking at last covered subspaces.

The following theorem is Kannan and Lovászes main bound on covering minima, and
comes directly from sucessively applying the previous lemma.

Theorem 4.4. [14, Thm. 2.7] For a convex body K P Kd, lattice Λ P Ld and every
1 ¤ i ¤ d� 1,

µipK,Λq ¤ c

�
i

2



µ1pK,Λq,

where c is an absolute constant.

When restricting to o-symmetric convex bodies, the following result is proven.

Theorem 4.5. [14, Thm. 2.13] For a o-symmetric convex body K P Kd, lattice Λ P Ld

and every 1 ¤ i ¤ d� 1,
µi�1pK,Λq ¤ 2µipK,Λq.

It is again sufficient to prove this for i � d � 1 and reduce the other cases to that
one by observing last covered subspaces. The proof utilizes the norm defined by the o-
symmetric body, and the methods used cannot be generalized to general convex bodies.

5 Upper Bounds via Projections

One of the tools introduced in [5] gives upper bounds on the covering radius of a convex
body, given in the next lemma.

Lemma 5.1. [5, Lem. 2.1] Let K P Kd be a convex body containing the origin, and let
π : Rd ! Rl be a linear projection to a rational l-subspace. Let Q � K X π�1p0q and let
L � π�1p0q be the linear subspace spanned by Q. Then, we have

µpK,Zdq ¤ µpQ,Zd X Lq � µpπpKq, πpZdqq.

We generalize this to a similar upper bound on the covering minima of a convex body
via the covering minima of its projections and intersections with rational subspaces.

Notation 5.2. For K P Kd and Λ P Ld, for notational convenience we additionally define
µ0pK,Λq :� 0. Notice that this definition agrees with the definition of covering minima,
because indeed, 0K � Λ � t0du � Λ � Λ intersects Rd, which is the only d-dimensional
affine subspace od Rd.

25



Theorem 5.3. Let K P Kd, Λ P Ld and V � Rd a rational linear subspace of dimension l
and i P rds. If by πV we denote the natural projection of Rd to V , the following holds:

µipK,Λq ¤ max
0¤j¤l

0¤i�j¤d�l

µjpπV pKq, πV pΛqq � µi�jpK X V K,ΛX V Kq

Proof. By definition, µipK,Λq is minimal such that µipK,ΛqK�Λ intersects every pd�iq-
dimensional affine subspace of Rd.
Let x � y � U be an arbitrary pd � iq-dimensional affine subspace of Rd, where x P V ,
y P V K, U ¤ Rd linear subspace.
Let UV � πV pUq and UV K � U X V K. Notice that if we look at the restriction πV |U , UV is
the image of this map, and UV K it’s kernel, therefore dimpUq � dimpUV q � dimpUV Kq.
Let dimpUV q � l � j, dimpUV Kq � pd � iq � pl � jq � pd � lq � pi � jq. For brievity, let
µj :� µjpπV pKq, πV pΛqq and µi�j :� µi�jpK X V K,ΛX V Kq.
Since x�UV � x� πV pUq � πV px�Uq is a pl� jq-dim affine subspace of V , there exist
uV P U , p P K, a P Λ such that

x� πV pu1q � µjπV ppq � πV paq

Let yu1 � u1 � πV pu1q, yp � p � πV ppq and ya � a � πV paq. Notice that yu1 , yp, ya P V K,
and because V K is a linear space, y1 :� y � yu1 � µjyp � ya P V K. Since py1 � Uq X V K �
y1 � pU X p�y1 � V Kqq � y1 � pU X V Kq is a ppd� lq � pi� jqq-dim affine subspace of V K,
there exist u2 P U X V K, q P K and b P ΛX V K such that

y1 � u2 � µi�jq � b

ñ y � yu1 � µjyp � ya � u2 � µi�jq � b

Now, adding up the two equalities we get:

x� πV pu1q � y � yu1 � µjyp � ya � u2 � µjπV ppq � πV paq � µi�jq � b

ñ x� y � πV pu1q � yu1 � u2 � µjpπV ppq � ypq � πV paq � uya � µi�jq � b �

ñ x� y � u1 � u2 � µjp� a� µi�jq � b

ñ x� y � u1 � u2 � pµj � µi�jq

�
µj

µj � µi�j

p�
µi�j

µj � µi�j

q



� a� b.

Here, LHS is in x� y�U , and RHS is in pµj �µi�jqK�Λ. Since x� y�U was arbitrary,
maxtµjpπV pKq, πV pΛqq�µi�jpKXV K,ΛXV Kq | 0 ¤ j ¤ l, 0 ¤ i� j ¤ d� luK intersects
every pd�iq-dim subspace of Rd, therefore µipK,Λq ¤ maxtµjpπV pKq, πV pΛqq�µi�jpKX
V K,ΛX V Kq | 0 ¤ j ¤ l, 0 ¤ i� j ¤ d� lu.
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5.1 Covering Minima of Direct Sums

Motivated by the conjecture that the terminal d-polytopes are the family of maximizers
for the covering radius in the family of non-hollow lattice polytopes, and the connection
of this conjecture to specific values of the covering minima, we want to investigate how
these functionals behave with respect to direct sums.
It is known that the covering radius is an additive functional with respect to direct sum,
as can be seen in [5, Cor. 2.2].
On the other hand, the lattice width is not an additive functional with respect to direct
sums. The lattice width of the direct sum is the minimum of the lattice widths of the
summands [6, Thm. 2.2]. We connect these two results, and give the answer to the
question of how covering minima interact with direct sums in the following theorem.

Theorem 5.4. Let Rd � V `W , dimpV q � l, dimpW q � d� l, K � V and L � W convex
bodies that contain the origin, Λ � V and Γ � W lattices, and i P rds. Then:

µipK ` L,Λ` Γq � max
0¤j¤l

0¤i�j¤d�l

µjpK,Λq � µi�jpL,Γq.

Proof. p¤:q By using Theorem 5.3 to the subspace V , we get the statement as V K � W
and by the definition of direct sum, πV pK ` Lq � K, πV pΛ` Γq � Λ, pK ` Lq XW � L
and pΛ` Γq XW � Γ.

p¥:q For all j such that 0 ¤ j ¤ l and 0 ¤ i�j ¤ d�l, we want to show µipK`L,Λ`Γq ¥
µjpK,Λq � µi�jpL,Γq.
First, from the definitions of direct sums of convex bodies and lattices, we notice
that every projection π to a i-dim rational subspace of V has πpK ` Lq � πpKq and
πpΛ ` Γq � πpΛq, therefore µipK ` L,Λ ` Γq ¥ µipK,Λq (if i ¤ l, ie if µipK,Λq makes
sense, then). Similarly, when it makes sense, µipK ` L,Λ` Γq ¥ µipL,Γq.
Now, we can assume j, i � j � 0, or moreover, µj :� µjpK,Λq ¡ 0 and µi�j :�
µi�jpL,Γq ¡ 0.
Suppose the countrary, and take 0   c   µj and 0   c1   µi�j such that c � c1 �
µipK ` L,Λ ` Γq. Then there exists a pl � jq-dimensional linear subspace UV ¤ V and
x P V such that px � UV q X cK � H; similarly, there exists a pd � l � i � jq-dim linear
subspace UW ¤ W and y P W such that py � UW q X c1L � H.
Since µipK ` L,Λ ` Γq � c � c1 and x � y � pUV ` UW q is a pd � iq-dim affine subspace
of Rd, it intersects pc� c1qpK `Lq � pΛ` Γq, ie there exist v P UV , w P UW , p P K, q P L,
λ P r0, 1s,a P Λ and b P Γ s.t:

x� y � v � w � pc� c1qpλp� p1� λqqq � a� b.

Since the sum is direct, this implies x�v � pc� c1qλp�a and y�w � pc� c1qp1�λqq� b.
Because 0d P K and 0d P L, which are convex sets, λp P K and p1 � λqq P L. Moreover,
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since px � UV q X cK � H and py � UW q X c1L � H, we can conclude pc � c1qλ ¡ c and
pc � c1qp1 � λq ¡ c1. This is equivalent to c1λ ¡ cp1 � λq and cp1 � λq ¡ c1λ, which is a
contradiction.
Therefore, we showed µipK ` L,Λ ` Γq ¥ µjpK,Λq � µi�jpL,Γq for every relevant j, ie
µipK ` L,Λ` Γq ¥ maxtµjpKq � µi�jpLq|0 ¤ j ¤ l, 0 ¤ i� j ¤ d� lu.

Specifically, this is a generalization of the two forementioned results:

• Covering radius of direct sums:

µpK ` L,Λ` Γq � µdpK ` L,Λ` Γq � max
0¤j¤l

0¤d�j¤d�l

µjpK,Λq � µd�jpL,Γq �

� µlpK,Λq � µd�lpL,Γq � µpK,Λq � µpL,Γq.

• Lattice width of direct sums:

ωΛ`ΓpK ` Lq �
1

µ1pK ` L,Λ` Γq
�

1

max
0¤j¤l

0¤1�j¤d�l

µjpK,Λq � µd�jpL,Γq
�

�
1

max tµ1pK,Λq, µ1pL,Γqu
� min

"
1

µ1pK,Λq
,

1

µ1pL,Γq

*
� min tωΛpKq, ωΓpLqu .

It is interesting that the behaviour of the operator of direct sum for the covering radius
and lattice width can be unified and proved in the same way, going through covering
minima. This raises a question wheter there are more results either on the covering ra-
dius or on the lattice width side that could be modified to work for all covering minima.

Now that we know how all covering minima behave with direct sums, we can see that
knowing all the covering minima of all terminal simplices would also result in knowing
all covering minima of terminal polytopes. More specifically:

Corollary 5.5. Let T be a terminal d-polytope. If we assume that Conjecture 3.5 holds in
all dimensions up to d, ie µjpTkq �

j
2
, for all j ¤ k ¤ d, then for all i P rds,

µipT q �
i

2
.
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Proof. Let k P N, l1, . . . , lk P N s. t.
k°

i�1

li � d and for j P rks, uj P R
kj such that 0lj P

uj�Sp1lj�1q. An arbitrary terminal d-polytope can be seen as T � pu1�Sp1l1�1qq`� � �`
puk�Sp1lk�1qq, and this decomposition into a direct sum agrees with the decomposition
of Rd into Rd � Rl1 ` � � � ` Rlk .
Since we assume that Conjecture 3.5 holds in dimensions up to d, we know that for
every j P rks and every 0 ¤ s ¤ lj, µspuj � Sp1lj�1qq �

s
2
.

For any i P rds, using this and applying Theorem 5.4 we get:

µipT q � max

#
ķ

j�1

sj
2

0 ¤ sj ¤ lj,
ķ

j�1

sj � i

+

ñ µipT q �
i

2
.

Going back to the two equivalent conjectures regarding the upper bound for the cov-
ering radius of a non-hollow lattice polytope, and values of covering minima of the
terminal simplices, using this corollary we get a stronger conjecture, and the associated
stronger version of Theorem as follows.

Conjecture 5.6. For every d P N, every terminal d-polytope T and every i P rds,

µipT q �
i

2
.

Theorem 5.7. For every d P N, the following are equivalent:

i) µpP q ¤ i
2

for every i ¤ d and every non-hollow lattice i-polytope P .

ii) µipTnq �
i
2

for every n ¥ d and every i ¤ d.

iii) µipT q �
i
2

for every n ¥ d, every terminal n-polytope T and every i ¤ d.

5.2 Terminal Simplices

Our next goal is to try to utilize the bound we give in Theorem 5.3 to get an upper
bound for the covering minima of terminal simplices. First, notice that the bound from
this theorem depends on covering minima of the projection to a linear subspace, as well
as those of intersections with the orthogonal complement of said linear subspace. One
could notice that in this case, it is convenient to work with coordinate subspaces, since
the projection of a terminal simplex to a coordinate subspace is the terminal simplex of
the appropriate dimension. Now, we would like to investigate what is the intersection
of a terminal simplex and a given coordinate subspace.
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Notation 5.8. For convenience, while utilizing Theorem 5.3, we will just write max
k

instead of actually writing what values k takes – it will always be assumed that k takes
values such that all the covering minima in the expression make sense, including 0.

Codenotti, Santos and Schymura in [5] introduce the following family of weighted ver-
sions of terminal simplices which will be of much use for our purposes.

Definition 5.9. Let ω � pω0, . . . , ωdq P Rd�1
¡0 be a vector of weights. We define the

following family of simplices:

Spωq :� convpω0 � p�1q, ω1 � e1, . . . , ωd � edq P Kd.

Specifically, Sp1d�1q � Td.

In the following lemma, we describe the convex body that one gets when intersecting a
terminal simplex with an arbitrary coordinate subspace.

Lemma 5.10. Let i P rds and let L be a coordinate subspace of Rd of dimension i. Then,
TdXL � Spp 1

d�i�1
, 1, . . . , 1qq, where the weight vector has i�1 entries, and equality means

really the equality if we restrict to the coordinates contained in L.

Proof. Since Td is symmetric with respect to the coordinate directions, we can assume
L � Ri � t0d�iu. Then, this statement is equivalent to showing Td X pRi � t0d�iuq �
Spp 1

d�i�1
, 1, . . . , 1qq � t0d�iu � convp 1

d�i�1
p�1iq, e1, . . . , eiq.

(�:) Since e1, . . . , ei are contained in Td � convp�1d, e1, . . . , edq and Ri � t0d�iu, and

1

d� i� 1
p�1iq �

1

d� i� 1
p�1dq �

ḑ

j�i�1

1

d� i� 1
ej

is also contained in both Td and Ri � t0d�iu, their convex hull is contained in Td X pRi �
t0d�iuq.

(�:) Let x � α0p�1dq �
d°

j�1

αjej be an arbitrary element in Td X pRi � t0d�iuq, where

αj ¥ 0 and
d°

j�0

αj � 1. Then for all i � 1 ¤ j ¤ d, αj � α0 because the last d � i � 1

coordinates have to be 0. Rewriting, we get:

x � α0

�
�1d �

ḑ

j�i�1

ej

�
�

i̧

j�1

αjej � pd� i� 1qα0

�
1

d� i� 1
p�1iq



�

i̧

j�1

αjej

Since pd�i�1qα0�
i°

j�1

αj �
d°

j�0

αj � 1, it follows that x P convp 1
d�i�1

p�1iq, e1, . . . , eiq.
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From this lemma, we can see that for explicitly utilizing our projection bound to termi-
nal simplices, we would have to know all the values of covering minima of weighted
versions of terminal simplices. In [5], Codenotti, Santos and Schymura propose the
following.

Conjecture 5.11. [5, Conj. 5.3] For every ω P Rd�1
¡0 with ω0 ¤ � � � ¤ ωd, and every i P rds,

the i-th covering minimum of Spωq is attained by the projection to the first i coordinates,
ie:

µipSpωqq �

°
0¤j k¤i

1
ωjωk

i°
j�0

1
ωj

.

Of course, assuming that this conjecture is true would include assuming we know all
covering minima of terminal simplices, since Sp1d�1q � Td. Nevertheless, this Conjec-
ture is known to hold for i � d (Theorem 6.4) and i � 1, because the covering radius
of line segments is known and therefore is less difficult to check manually what the
first covering minimum of a convex body is. Since the case i � d is of no use for our
projection bound, we will utilize the case where the intersection is of dimension 1, ie
projection is to a d� 1 dimensional coordinate subspace.

Corollary 5.12. For every d P N and 2 ¤ i ¤ d,

µipTdq ¤
1

2
�

i�2̧

j�0

d� j

d� j � 1
.

Proof. Observe the coordinate hyperplane L � Rd�1 � t0u. Then, πLpTdq � Td�1 � t0u,
and as seen in Lemma 5.10, Td X LK � t0d�1u � Sp1

d
, 1q � t0d�1u � convp�1

d
ed, edq.

Since the ambient space does not matter for covering minima purposes, and πLpZ
dq �

Zd�1 � t0u and Zd X LK � t0d�1u � Z, we can just see these as Td�1 and r�1
d
, 1s in

corresponding standard lattices. Notice also that µpr�1
d
, 1sq � d

d�1
, since the covering

radius of every segment is just the scaling needed to get its lenght to be 1. Then,
Theorem 5.3 applied to Td and L gives the following:

µipTdq ¤ max
k

µkpTd�1q � µi�kpr�
1

d
, 1sq � max

"
µipTd�1q, µi�1pTd�1q �

d

d� 1

*
.

Notice that on the right hand side, the dimension of the terminal simplices observed has
dropped. By successive application of this inequality, we can get to one of the values
that we know – the first covering minimum of a terminal simplex, or the covering radius
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of a terminal simplex. Specifically, by applying this inequality to the first element in the
set we’re taking the maximum of, we get:

µipTdq ¤ max

"
µipTd�2q, µi�1pTd�2q �

d� 1

d
, µi�1pTd�1q �

d

d� 1

*
.

Let’s first prove µipTdq ¤ maxt i
2
, µi�1pTd�1q �

d
d�1

u.
Since Td�1 projects to Td�2 when projecting out the last coordinate, µi�1pTd�2q ¤ µi�1pTd�1q.
Additionally, d�1

d
  d

d�1
, therefore µi�1pTd�2q �

d�1
d

  µi�1pTd�1q �
d

d�1
, and the for-

mer can be removed from the set we are maximizing over. This brings us to µipTdq ¤
maxtµipTd�2q, µi�1pTd�1q �

d
d�1

u, ie we just dropped the dimension of the terminal sim-
plex by 1 again in the first element of the set we’re maximizing. Repeating this process
d� i times in total, we get to the covering radius of a terminal simplex, which is a value
we know:

µipTdq ¤ max

"
µipTiq, µi�1pTd�1q �

d

d� 1

*
� max

"
i

2
, µi�1pTd�1q �

d

d� 1

*
.

Applying this inequality to the term µi�1pTd�1q on the right hand side, we get:

µipTdq ¤ max

"
i

2
,
i� 1

2
�

d

d� 1
, µi�2pTd�2q �

d� 1

d
�

d

d� 1

*
.

Now, notice that since d ¥ 1, d
d�1

¥ 1
2
, ie i�1

2
� d

d�1
¥ i

2
. Moreover, for every 0 ¤

j ¤ i, since d ¡ i, d�j
d�j�1

¥ 1
2
. Therefore, applying the inequality µi�jpTd�jq ¤

maxt i�j
2
, µi�j�1pTd�j�1q �

d�j
d�j�1

u successively i � 1 times for 0 ¤ j ¤ i � 2 brings us
to:

µipTdq ¤ max

#
1

2
�

i�2̧

j�0

d� j

d� j � 1
, µ1pTd�i�1q �

i�2̧

j�0

d� j

d� j � 1

+
�

1

2
�

i�2̧

j�0

d� j

d� j � 1
.

6 Upper Bounds via Intersections

In the proof of [9, Prop. 3.3], Merino and Schymura implicitly use the following, which
we will prove explicitly since the second upper bound for covering minima we give will
derive from this observation.

Lemma 6.1. Let f1, . . . , fd be a linear basis of Rd. Then, for every i P rds and for every
U P Ad�ipR

dq, there exist 1 ¤ j1   j2   � � �   ji ¤ d such that

U X span
R
tfj1 , . . . , fjiu � H.
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Proof. Write down the affine subspace U in the given basis as a translate by the vector
d°

j�1

αjfj of the span of d� i linearly independent vectors
d°

k�1

λl,kfk, for 1 ¤ l ¤ d� i:

U �
ḑ

j�1

αjfj � span
R

#
ḑ

k�1

λl,kfk | l P rd� is

+
.

If we view this linear subspace as a pd � iq � d matrix A � rλl,kslPrd�is,kPrds P Rpd�iq�d,

linear independence of
d°

k�1

λl,kfk, for 1 ¤ l ¤ d � i, which are exactly the row vectors

of this matrix in the given basis, implies that the rank of this matrix is d� i. Therefore,
only by using row operations, we can find an equivalent matrix A1 P Rpd�iq�d which has
a pd� iq � pd� iq submatrix which is up to column swaps, the identity matrix. Without
loss of generality, suppose that A1 has exactly the pd � iq � pd � iq identity matrix as its
first d� i columns. This assumption corresponds to swapping the indices of the original
basis vectors, or in the language the he teorem is stated, its forcing tj1, . . . , jiu to be
exactly the set td� i� 1, . . . , du. Let

A1 �

�
����
1 0 � � � 0 λ1d�i�1,1 � � � λ1d,1
0 1 � � � 0 λ1d�i�1,2 � � � λ1d,2
...

... . . . ...
... . . . ...

0 0 � � � 1 λ1d�i�1,d�i � � � λ1d,d�i

�
���� P Rpd�iq�d.

Since we got from A to A1 just by row operations, their row vectors in the given basis
have the same R span, ie

span
R

#
ḑ

k�1

λl,kfk | l P rd� is

+
� span

R

#
fl �

ḑ

k�d�i�1

λ1l,kfk | l P rd� is

+
.

Now, since U �
d°

j�1

αjfj � span
R

"
gl :� fl �

d°
k�d�i�1

λ1l,kfk | l P rd� is

*
, let’s find one

element in U X span
R
tfd�i�1, . . . , fdu.

U Q
ḑ

j�1

αjfj �
d�i̧

l�1

p�αlqgl �
ḑ

j�1

αjfj �
d�i̧

l�1

αl

�
fl �

ḑ

k�d�i�1

λ1l,kfk

�
�

�
ḑ

j�1

αjfj �
d�i̧

l�1

αlfl �
d�i̧

l�1

αl

ḑ

k�d�i�1

λ1l,kfk �
ḑ

j�d�i�1

αjfj �
ḑ

k�d�i�1

�
d�i̧

l�1

αl

�
λ1l,kfk �

�
ḑ

k�d�i�1

�
αk �

�
d�i̧

l�1

αl

�
λ1l,k

�
fk P span

R
tfd�i�1, . . . , fdu.
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Therefore, U X span
R
tfd�i�1, . . . , fdu � H, ie every pd � iq-dimensional affine subspace

of Rd intersects some coordinate i-dimensional subspace in any basis.

Given this lemma, we know that every affine d�i subspace has to intersect at least one of
the i- dimensional coordinate subspaces. Therefore, any set covering all i-dimensional
coordinate subspaces has to intersect every affine d � i subspace. We will use this to
derive the following upper bound on the i-th covering minimum of any convex body.

Theorem 6.2. Let K P Kd, Λ P Ld and let tf1, . . . fdu be a basis of Λ. For I P
�rds

i

�
, denote

by LI � span
R
tfi | i P Iu the i-dimensional linear subspace of Rd corresponding to I and

the given basis. If for every I P
�rds

i

�
, dimpK X LIq � i, then:

µipK,Λq ¤ max

"
µpK X LI ,ΛX LIq | I P

�
rds

i


*
.

Proof. Let U be an arbitrary pd � iq-dimensional affine subspace of Rd. By Lemma 6.1,
there exists I P

�rds
i

�
such that U X LI � H. Restricting to LI , since K X LI is full

dimensional and ΛXLi is a lattice in Li since f1, . . . , fd is a lattice basis, by the definition
of covering radius:

µpK X LI ,ΛX LIqpK X LIq � ΛX LI � LI

ñ µpK X LI ,ΛX LIqK � Λ � LI

ñ pµpK X LI ,ΛX LIqK � Λq X U � LI X U � H

Let t ¥ 0. The previous calculations imply that for ptK � Λq X U to be nonempty, it
is enough for t to be greater or equal to µpK X LI ,Λ X LIq. Therefore, for tK � Λ to
intersect all pd� iq-dimensional affine subspaces, it is enough that t is the maximum of
these values when we iterate I P

�rds
i

�
.

Remark 6.3. Notice that the supposition of all coordinate intersections of dimension
i being full dimensional is not that harsh – covering minima are translatory invariant,
so for every convex body it suffices to translate it so 0d is in the interior. Nevertheless,
the bound is not translatory invariant and we give it in this level of generality because
for example this supposition holds for Sd and the standard basis e1, . . . , ed of Zd, and is
going to be sharp when viewing Sd as is, without translating 0d into the interior.

6.1 Terminal Simplices

We would like to see what the upper bound we obtained in Theorem 5.3 is for the family
of polytopes we are the most interested in – terminal simplices. To get explicit numbers,
we need a result due to Codenotti, Santos and Schymura ([5]), where they calculate
the covering radii of weighted versions of terminal simplices.
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Theorem 6.4. [5, Theorem 1.4] For every ω P Rd�1
¡0 , we have:

µpSpωqq �

°
0¤i j¤d

1
ωiωj

d°
i�0

1
ωi

Notice that this theorem is a generalization of Theorem 3.4. The proof of this theorem
relies on the construction of certain regions, which can be seen as regions induced by
a hyperplane arrangement, and furthermore analysing the alcoved arrangement, whichs
description can be found in [1]. Then, they reduce the problem of finding the covering
radius of Spωq to the problem of finding a certain last covered point in a cell of this
arrangement, which in this case can be reduced to a system of linear equations.

In the next corollary, we give another improvement on the upper bound for the covering
minima of terminal simplices.

Corollary 6.5. For d P N, i P rds, the following inequality holds:

µipTdq ¤
i

2

�
1�

d� i

d� 1




Proof. The goal is to use Theorem 6.2 for the standard basis vectors.
First, notice that Td is symmetric with respect to the standard basis vectors, so the bound
from Theorem 6.2 becomes:

µipTdq ¤ µpTd X pRi � t0d�iuqq.

Recall that Lemma 5.10 gives us that Td X pRi � t0d�iuq � S
�

1
d�i�1

, 1, . . . , 1
�
� t0d�iu.

Now, from Theorem 6.4 we conclude:

µ

�
S

�
1

d� i� 1
, 1, . . . , 1




�
pd� i� 1q �

�
i
1

�
� 1 �

�
i
2

�
pd� i� 1q � 1� 1 �

�
i
1

� �
di� i2 � i� i2�i

2

d� 1
�

�
2di� i2 � i

2pd� 1q
�

i

2

2d� i� 1

d� 1
�

i

2

�
1�

d� i

d� 1




6.2 Locally anti-blocking Bodies

Our next goal is to find a family of convex bodies for which our bound given in Theorem
6.2 is sharp. The following definition is due to Kohl, Olsen and Sanyal ([17]).
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Definition 6.6. A convex body K P Kd is called locally anti-blocking if for every coordi-
nate subspace L, πLpKq � K X L.

This family of convex bodies is a generalization of both anti-blocking bodies ([8]) mostly
known in the context of combinatorial optimization and unconditional bodies, which are
heavily studied both in the context of convex geometry and functional analysis. For a
review of all three of these classes of polytopes, we refer to [17].

Notice that for any convex body, the covering radii of projections to coordinate sub-
spaces give lower bounds, and intersections with the same subspaces give upper bounds
for covering minima. Since for locally anti-bocking bodies the projections and intersec-
tions are the same, the following corrolary holds.

Corollary 6.7. Let K P Kd be a locally anti-blocking convex body and i P rds. For I P
�rds

i

�
,

denote by LI � span
R
tei | i P Iu, where e1, . . . , ed is the standard basis of Rd. Then:

µipKq � max

"
µpK X LIq | I P

�
rds

i


*

Proof. By a direct application of Theorem 6.2, we get the wanted upper bound for
µipKq. By unconditionallity, for every I P

�rds
i

�
, K X LI � πLI

pKq, and since LI is a
coordinate subspace, Zd X LI � πLI

pZdq � Zi. By definition of covering minima via
projections to rational subspaces,

µipKq ¥ µpπLI
pKq, πLI

pZdqq � µpK X LIq,

and is therefore greater or equal than the maximum of these values.

7 Comparing Upper Bounds

The goal of this chapter is to compare the upper bounds we obtained in Theorem 5.3
and 6.2 with the already known upper bound involving successive minima due to Kan-
nan and Lovász, as in Lemma 4.1. We will do this for the few examples of convex bodies
where all the covering minima are known, as well as the family of terminal simplices,
where it is conjectured that µipTdq �

i
2
, and i

2
is a known lower bound.

We will refrain from comparing with the bound in Theorem 4.4 due to Kannan and
Lovász, since that result is asymptotic in nature and is far off from all of the other
bounds presented when comparing on specific examples.
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7.1 Unimodular Simplices

As seen in Proposition 2.14, for every i P rds, µipSdq � i.

• Kannan & Lovász bound (4.1)
By Examples 1.25 and 1.31, λ1pSd � Sdq � � � � � λdpSd � Sdq � 1 and ωpSdq � 1.
Furthermore, by Lemma 2.6, µ1pSdq �

1
ωpSdq � 1. Therefore, the first bound due

to Kannan and Lovász (Lemma 4.1) is sharp for every i P rds– i � 1 � µi�1pSdq ¤
µipSdq � λd�ipSd � Sdq � i� 1.

• Intersection bound (5.3)
Notice that the unimodular simplex Sd can be seen as the d-fold direct sum of unit

length intervals with 0d on the boundary, ie Sd �
dÀ

j�1

r0d, ejs. Therefore, we can

make use of Theorem 5.4, which is a corollary of Theorem 5.3. Specifically,

µipSdq � µi

�
dà

j�1

r0d, ejs,
dà

j�1

Z

�
� max

a1�����ad�i
0¤aj¤1

ḑ

j�1

µaj pr0d, ejsq .

Since µ1pr0d, ejsq � 1 for all j P rds, and µ0 is 0 for all convex bodies, the fact that
the indices sum up to i implies µipSdq � i. Therefore, the bound from Theorem
5.3 is also sharp for the unimodular simplex when projections are appropriately
chosen – the coordinate axes.

• Projection bound (6.2)
Sd is locally anti-blocking since for every coordinate i-hyperplane L, πLpSdq � Si �
Sd X L, therefore by Corollary 6.7, equality is attained in the bound from Theo-
rem 6.2. Moreover, since all coordinate intersections are unimodular simplices of
lower dimension, this is a way to calculate all covering minima of all unimodular
simplices utilizing the value of covering radii for all unimodular simplices.

7.2 Hypercubes

For a hypercube Cd � r�1, 1sd, we know from Example 2.13 that µ1pCdq � � � � �
µdpCdq �

1
2
.

• Kannan & Lovász bound (4.1)
Since Cd � Cd � 2Cd and all the successive minima of the hypercube are 1 (see
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Example 1.23), λ1pCd � Cdq � � � � � λdpCd � Cdq �
1
2
. Additionally, from Example

1.38 we see µ1pCdq �
1

ωpCdq �
1
2
. Therefore, the bound in Lemma 4.1 is not sharp

at any step, ie 1
2
� µi�1pCdq ¤ µipCdq � λd�ipCd � Cdq �

1
2
� 1

2
� 1. By successive

application of this bound, one would get µipCdq ¤
d
2
.

• Intersection bound (5.3)
Theorem 5.3 is also not of much use in this case. Specifically, if we take a projec-
tion to a coordinate j subspace L, it gives

1

2
� µipCdq ¤ max

k
µkpπLpCdq, πLpZ

dqq � µi�kpCd X LK,Zd X LKq �

� max
k

µkpCjq � µi�kpCd�jq �
1

2
�

1

2
� 1.

If L is not a coordinate subspace, even though the summand coming from the
projection becomes much smaller because the lattice gets denser, the summand
coming from the intersection gets much bigger and makes the bound worse.

• Projection bound (6.2)
The hypercube is again a locally anti-blocking body, therefore the bound from
Theorem 6.2 will be sharp. Similarly to the case of the unimodular simplex in
Section 7.1, for a i-dimensional coordinate subspace L, Cd X L � Ci. Therefore,
this bound reduces the calculation of all covering minima of hypercubes of all
dimensions to calculating covering radii of all hypercubes.

7.3 Crosspolytopes

• Kannan & Lovász bound (4.1)
As already discussed in Example 4.2, for every i P rds, µipC

�
d q �

d
2
, and the succes-

sive minima bound is sharp in this case.

• Intersection bound (5.3)
Notice that we can see the crosspolytope C�

d as a d-fold direct sum of intervals

with 0d in their relative interiors, ie C�
d �

dÀ
j�1

r�ej, ejs. Similar as in the case of the

unimodular simplices, we can now make use of Theorem 5.3 through the formula
for the covering minima of direct sums in Theorem 5.4, which gives us:

µipC
�
d q � µi

�
dà

j�1

r�ej, ejs,
dà

j�1

Z

�
� max

a1�����ad�i
ajPt0,1u

µaj pr�ej, ejsq .
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Since µ1pr�ej, ejsq �
1
2

for all j P rds, and the indices sum up to i, it follows that
µipC

�
d q �

d
2
. One could notice that while using this bound to calculate µipC

�
d q, we

did not use the symmetry of the crosspolytope to its fullest extent. Specifically,
this whole calculation would work for any direct sum of intervals of length 2 in
their corresponding coordinate axes, containing 0d in its interior. Moreover, 0d
being in the interior or boundary of the segments does not matter at all – if it is in
the interior of all segments, we get a polytope resembling the crosspolytope, and
if its on the boundary of every segment we get a simplex with d orthogonal edges,
and all other options interpolate between the two. The lengths of the segments
do not matter that much either, for segments of lenghts l1 ¤ � � � ¤ ld, the i-th

covering minimum of their direct sum would be
i°

j�1

1
lj

. One could also notice that

here we did not use the fact that the covering radius of a crosspolytope is half of
its dimension, which as seen in Example 1.42 requires a bit of calculation itself.

• Projection bound (6.2)
As in the previous two cases, the crosspolytope is also a locally anti-blocking body,
which when intersected with a coordinate subspace gives a crosspolytope of the
appropriate dimension. Therefore, the intersection bound is also sharp, and can
generate all covering minima of a crosspolytope from knowing the covering radii
of crosspolytopes in lower dimensions.

7.4 Pd,i

Recall from Section 2.2 for i P rds the family of polytopes Pd,i :� Cd X iC�
d , for which

Merino and Schymura ([9]) calculated all covering minima to be:

µjpPd,iq �

"
1
2

, j ¤ i
j
2i

, j ¡ i.

Since for i � 1 and i � d, Pd,i is respectively C�
d and Cd, which we already analized, we

will now focus on the cases 2 ¤ i ¤ d

• Kannan & Lovász bound (4.1)

Observe that C�
d � Pd,i � Cd, therefore for every j P rds, λjpC

�
d q ¥ λjpPd,iq ¥

λjpCdq. Since all the successive minima of Cd and C�
d are 1, so are the successive

minima of Pd,i. Therefore, λjpPd,i � Pd,iq � λjp2Pd,iq �
1
2
.

The Kannan and Lovász bound is not tight for the first i � 1 covering minima:
1
2
� µj�1pPd,iq ¤ µjpPd,iq�λd�jpPd,i�Pd,iq �

1
2
� 1

2
� 1. Moreover, since i ¡ 1, this
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bound is also not tight for any j ¡ i : j�1
2i

� µj�1pPd,iq ¤ µjpPd,iq�λd�jpPd,i�Pd,iq �
j
2i
� 1

2
� j�i

2i
.

• Projection bound (5.3)

Notation 7.1. For convenience, for l   i define Pl,i � Cl X iC�
l � Cl.

Notice that for a j-dimensional coordinate subspace Lj,

πLj
pPd,iq � Pd,i X Lj � Cd X iC�

d X Lj � Cj X iC�
j � Pj,i.

Therefore, Theorem 5.3 for Pd,i with respect to the subspace Lj gives:

µlpPd,iq ¤ max
k

µkpPj,iq � µl�kpPd�j,iq.

Our goal now is to see in which cases an appropriate choice of j can give us the
tight bound.
If l ¤ i, the left hand side is 1

2
, and however we choose 1 ¤ j ¤ d � 1, there will

exist a k on the right hand side such that µkpPj,iq, µl�kpPd�j,iq � 0. Since both of
these values are at least 1

2
, the best we could hope to get in this case is µlpPd,iq ¤ 1,

which is not sharp.
If l ¡ i, µlpPd,iq �

l
2i

. Notice that if for all viable k on the right hand side, k ¥ i
and l � k ¥ i, we would get k

2i
� l�k

2i
� l

2i
on the right hand side, ie the tight up-

per bound. If these two inequalities are not satisfied, this bound will not be tight
since one of the covering minima would be 1

2
, which would in that case be strictly

bigger than k
2i

or l�k
2i

. Now, let’s see when these two inequalities can be satisfied
for all k. Firstly, maxt0, l� j � du ¤ k ¤ mintj, lu are all the k that we should take
into consideration in Theorem 5.3. The inequalities we want to hold ammount to
i ¤ k ¤ l�i. Therefore, it would suffice if i ¤ maxt0, l�j�du and mintj, lu ¤ l�i.
This is equivalent to l � j ¥ d, j ¤ l and d� pl � iq ¤ j ¤ l � i, where we see that
the first two inequalities are redundant. Therefore, the appropriate j such that
the projection bound onto a coordinate j subspace would give us the sharp upper
bound for µlpPd,iq would be any d� pl � iq ¤ j ¤ l � i. Notice that such a j exists
if and only if l � i ¥ d

2
.

• Intersection bound (6.2)
Concerning our intersection bound – Pd,i are locally anti-blocking bodies, so by
Corollary 6.7, it is always tight. Specifically, the proof of this Corollary actually
mimicks the calculation of the covering minima of Pd,i in [9].

The following table summarizes the previous comparisons.
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Kannan & Lovász (4.1) Projection bound (5.3) Intersection bound (6.2)

Sd tight tight tight

Cd not tight, d�1
2

off not tight, 1
2

off tight

C�
d tight tight tight

Pd,i not tight tight in dimensions ¥ i� d
2

tight

7.5 Terminal Simplices

Regarding Terminal Simplices, we don’t know the values of their covering minima,
therefore we can only compare upper bounds amongst each other instead of talking
about when they are thight. The bounds that we will take into consideration are:

1. µipTdq ¤ i.
This bound comes from the fact that the i-th covering minimum is the maximum of
covering radii of i-dimensional rational projections, the fact that lattice polytopes
project to lattice polytopes, and Proposition 3.1.

2. µipTdq ¤
d
2
.

This bound comes from the fact that covering minima are monotone with respect
to the index, therefore µipTdq ¤ µdpTdq � µpTdq, and the latter is equal to d

2
as in

Theorem 3.4.

3. µipTdq ¤
1
2
� pi�1qd

d�1
�: BKL

d,i .

This bound is obtained by successive use of Lemma 4.1 and the fact that µ1pTdq �
1
2
, together with the fact that λipTd � Tdq �

d
d�1

for all i P rds (see [4], proof of
Proposition 3.12).

4. µipTdq ¤
1
2
�

i�2°
j�0

d�j
d�j�1

�: Bπ
d,i

This is the bound from Corrolary 5.12, which was obtained using the projection
bound from Theorem 5.3.

5. µipTdq ¤
i
2

�
1 � d�i

d�1

	
�: BX

d,i

This is the bound from Corrolary 6.5, which was obtained using the intersection
bound from Theorem 6.2.
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• Comparing i and BX
d,i:

We can calculate BX
d,i �

i
2

�
1� d�i

d�1

�
� i

2
� ipd�iq

2pd�1q � i � ipi�1q
2pd�1q and see that this is

an improvement of the µipTdq ¤ i bound by a linear factor of ipi�1q
2pd�1q . We can also

notice that this improvement is significantly better for bigger values of i then for
smaller ones.

• Comparing d
2

and BX
d,i:

Calculating BX
d,i �

i
2
� ipd�iq

2pd�1q �
d
2
� ipd�iq�pd�iqpd�1q

2pd�1q � d
2
� pd�iqpd�1�iq

2pd�1q , we see that BX
d,i

is better by a linear factor of pd�iqpd�1�iq
2pd�1q , which is strictly positive for all i   d. This

improvement is significantly better for smaller values of i than for bigger ones, but
that is because the bound of d

2
is sharp for i � d and doesn’t get better by varying

the parameter i.

• Comparing i and Bπ
d,i:

By calculating Bπ
d,i �

1
2
�

i�2°
j�0

d�j
d�j�1

� 1
2
� i � 1 �

i�2°
j�0

1
d�j�1

� i �

�
1
2
�

i�2°
j�0

1
d�j�1

�
,

we see that Bπ
d,i is always better.

• Comparing d
2

and Bπ
d,i:

To compare Bπ
d,i and µipTdq ¤ µpTdq �

d
2
, we calculate Bπ

d,i �
1
2
�

i�2°
j�0

pd�j�1q�pd�j�1q
2pd�j�1q �

i
2
�

i�2°
j�0

d�j�1
2pd�j�1q �

d
2
�

�
d�i
2
�

i�2°
j�0

d�j�1
2pd�j�1q

�
. Notice that for a fixed d, d�i

2
�

i�2°
j�0

d�j�1
2pd�j�1q

is a monotonely decreasing function of i, and that it is positive for i � 1 and nega-
tive for i � d� 1. Therefore, for i small with respect to d, the bound Bπ

d,i is better
than the bound d

2
, and worse for i big with respect to d.

• Comparing BKL
d,i and BX

d,i:

We want to see for which pairs of d and i is BX
d,i ¤ BKL

d,i . Let’s transform BKL
d,i so

it’s more convenient to compare to BX
d,i in the given form. BKL

d,i � 1
2
� pi�1qd

d�1
�

1
2
� pi�1qpd�1q

2pd�1q � pi�1qpd�1q
2pd�1q � i

2
� pi�1qpd�1q

2pd�1q � i
2

�
1� pi�1qpd�1q

ipd�1q

	
. Therefore, BX ¤ BKL

if and only if d�i
d�1

¤ pi�1qpd�1q
ipd�1q , ie ipd� iq ¤ pi� 1qpd� 1q � pi� 1qpd� iq � pi� 1q2.

Subtracting pi� 1qpd� 1q from both sides of this inequality, we get d� i ¤ pi� 1q2.
Transforming this a bit more, we see that it’s equivalent to pi� 1

2
q2 ¥ d� 3

4
. Finally,
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we can conclude that BX
d,i is better than the Kannan and Lovász bound if and only

if i ¥
b
d� 3

4
� 1

2
.

• Comparing BKL
d,i and Bπ

d,i:
Since for every 1 ¤ j ¤ i � 2, d�j

d�j�1
  d

d�1
, we can conclude that Bπ

d,i   BKL
d,i for

all all d and i ¡ 2, and we see that the bounds are the same for i � 2.

• Comparing Bπ
d,i and BX

d,i:
Since Bπ

d,i   BKL
d,i holds for all d and i, and there exist cases when BX

d,i ¡ BKL
d,i , we

know at least in those cases that Bπ
d,i   BX

d,i. However, for bigger values of i, the
BX

d,i will be better than Bπ
d,i. We will not provide in closed form when exactly this

happens, but since we have shown that for all pairs of d and i BX
d,i  

d
2
, and that if

i is big enough compared to d, Bπ
d,i ¡

d
2
, this implies that in those cases BX

d,i   Bπ
d,i.

This fact can be also seen by noticing that BX
d,i�BX

d,i�1 �
i

d�1
  d�i

d�i�1
� Bπ

d,i�Bπ
d,i,

for all i   d, and even though the Bπ
d,i starts off better for small i, this difference

is big enough to push the Bπ
d,i over BX

d,i for big i with respect to d.

In the following table we present the calculations of the conjectured values i
2
, Kannan

and Lovaśzes BKL
d,i and our bounds Bπ

d,i and BX
d,i for the covering minima of the simplex

T1000.

bound

i
15 45 46 100 500 700 800 999

i
2

7.50 22.50 23.00 50.00 250.00 350.00 400.00 499.50

BKL
1000,i 13.99 43.96 44.96 98.90 498.50 698.30 798.20 997.00

Bπ
1000,i 13.99 43.96 44.95 98.90 498.31 697.80 797.40 992.35

BX
1000,i 14.88 43.97 44.92 94.96 374.88 454.90 479.92 500.00

Table 1: Values of bounds on µipT1000q, rounded up to 2 digits

From Table 7.5 we can notice that the improvement of Bπ
d,i compared to BKL

d,i is not
significant. Nevertheless, we have proved that it will always be a better bound. We can
also notice that for d � 1000, the BX

d,i becomes the best bound for i � 46, and becomes
significantly better for bigger i, being just around 1

2
away from the lower bound that is

conjectured to be sharp for i � 999. In general, BX
d,d�1 �

d�1
2

� d�1
2pd�1q , therefore this

bound proves that the value of the pd � 1q-st covering minimum of Td is in an interval

43



smaller than 1
2
.

7.6 General comparisons

Throughout this section, we highlight some important differences between the three
upper bounds on covering minima. Firstly, the bound due to Kannan and Lovász de-
pends on the successive minima of the difference body. Moreover, looking at the proof
of Lemma 4.1, we do not see a class of convex bodies for which this bound will be sharp.

Our projection bound depends on calculating the projection and intersection of the con-
vex body with respect to the chosen subspace and its orthogonal complement, and the
covering minima of those convex bodies. The positive aspect of this is that it does not
depend on successive minima, as the recursive connection between covering minima
seems more natural. However, there does not exist an algorithm for calculating cover-
ing minima of rational polytopes. As seen in Theorem 5.4, this bound will be sharp for
all convex bodies that can be decomposed into a direct sum. However, the result pre-
sented there does still depend on smaller covering minima of convex bodies of smaller
dimension, which are again hard to calculate, but it is effective in the sense of it’s re-
ducing a problem into the same problem in smaller dimensions. We do not know when
exactly this bound will be sharp, but we assume that this bound will be close to optimal
when the convex body can be well aproximated with a direct sum of ”simpler” bodies.
We would also like to point out that the generality in which this bound is given, leaves
a lot of degrees of freedom in the choice of which subspaces the bound will emphasise.

As for our intersection bound, it is the best one in the sense of dependencies – it depends
only on intersections of the convex body with coordinate subspaces, and the covering
radii of those. This is a positive, since there exists an algorithm for calculating the cov-
ering radius of rational polytopes. As seen in Corollary 6.7, this bound will be tight for
all locally anti-blocking bodies, but the equality case might not be limited to just that
family. It is also worth mentioning that this bound is tight for all convex bodies whose
covering minima are already known.
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[9] Bernando González Merino and Matthias Schymura, On densities of lattice arrange-
ments intersecting every i-dimensional affine subspace, Discrete Comput. Geom. 58
(2017), no. 3, 663–685.

[10] Peter M. Gruber, Convex and discrete geometry, Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 336,
Springer-Verlag, Berlin, 2007.

[11] Martin Henk, Matthias Schymura, Fei Xue, Packing minima and lattice points in
convex bodies, Moscow Journal of Combinatorics and Number Theory, 10 (1): 25–
48, 2021.

[12] Cor A. J. Hurkens, Blowing up convex sets in the plane, Linear Algebra Appl., 134:
121–128, 1990.

45



[13] Ravi Kannan, Lattice translates of a polytope and the Frobenius problem, Combina-
torica 12 (1993), no. 2, 161–177.
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